Linker engineering of covalent organic frameworks for efficient photocatalytic hydrogen evolution†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-04-01 DOI:10.1039/D5QI00417A
Xu Ding, Xin Zhou, Xiao Wang, Hailong Wang and Jianzhuang Jiang
{"title":"Linker engineering of covalent organic frameworks for efficient photocatalytic hydrogen evolution†","authors":"Xu Ding, Xin Zhou, Xiao Wang, Hailong Wang and Jianzhuang Jiang","doi":"10.1039/D5QI00417A","DOIUrl":null,"url":null,"abstract":"<p >Interfacial charge transfer and active sites play important roles in the performance of heterogeneous photocatalysts. Reticular chemistry in covalent organic frameworks (COFs) allows the construction of isomeric architectures made of different donor and acceptor monomers for tuning the charge transfer dynamics and active sites. Herein, five D–A dual-pore COFs were prepared from the reaction of naphthalene-2,6-diamine (electron donor) with different tetraaldehyde electron acceptors. Experimental results disclosed that linker engineering, by changing the conjugation systems using heteroatoms of benzooxadiazole, benzothiadiazole, benzoselenadiazole, naphthothiadiazole, and naphthoselenadiazole, tuned the electron-accepting capacity of the corresponding D–A COFs. Among the five samples, the naphthothiadiazole-derived COF demonstrated optimal charge transfer and active sites, exhibiting the highest hydrogen evolution rate of <em>ca.</em> 35 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> in the presence of 3 wt% Pt under visible-light irradiation (&gt;420 nm). This work illustrates linker engineering as a strategy for the simultaneous adjustment of interfacial charge transfer and active sites to enhance the hydrogen generation efficiency, offering new vigor to develop the COF photocatalysts on the basis of reticular synthesis.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 14","pages":" 4417-4427"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00417a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial charge transfer and active sites play important roles in the performance of heterogeneous photocatalysts. Reticular chemistry in covalent organic frameworks (COFs) allows the construction of isomeric architectures made of different donor and acceptor monomers for tuning the charge transfer dynamics and active sites. Herein, five D–A dual-pore COFs were prepared from the reaction of naphthalene-2,6-diamine (electron donor) with different tetraaldehyde electron acceptors. Experimental results disclosed that linker engineering, by changing the conjugation systems using heteroatoms of benzooxadiazole, benzothiadiazole, benzoselenadiazole, naphthothiadiazole, and naphthoselenadiazole, tuned the electron-accepting capacity of the corresponding D–A COFs. Among the five samples, the naphthothiadiazole-derived COF demonstrated optimal charge transfer and active sites, exhibiting the highest hydrogen evolution rate of ca. 35 mmol g−1 h−1 in the presence of 3 wt% Pt under visible-light irradiation (>420 nm). This work illustrates linker engineering as a strategy for the simultaneous adjustment of interfacial charge transfer and active sites to enhance the hydrogen generation efficiency, offering new vigor to develop the COF photocatalysts on the basis of reticular synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效光催化析氢共价有机框架的连接工程
界面电荷转移和活性位点对非均相光催化剂的性能起着重要作用。共价有机框架(COFs)中的网状化学确保了由不同的供体和受体单体组成的异构结构的构建,以调节电荷转移动力学和活性位点。本文以萘-2,6-二胺给体与不同的四醛受体反应制备了5个D-A双孔COFs。实验结果表明,通过改变苯并杂二唑、苯并噻唑、苯并硒二唑、萘并噻唑和萘并硒二唑的杂原子和共轭体系,连接剂工程可以调节相应的D-A COFs的电子接受能力。在可见光(420 nm)照射下,在3 wt % Pt的作用下,萘噻二唑衍生的COF具有最佳的电荷转移和活性位点,析氢速率最高,约为35 mmol g−1 h−1。这项工作说明了同时调整界面电荷转移和活性位点的连接剂工程策略可以提高产氢效率,为开发网状合成工具箱基础之一的COF光催化剂注入了新的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Ultra-efficient energy transfer and near-infrared luminescence in hexagonal aluminate phosphors enabled by heterogeneous ion pairs co-doping Truss bridge-like anhydrous stacking in hybrid crystal triggers ultra-high stability and robust birefringence Bridging the gap: thymine segments to create single-strand versions of DNA2-[Ag₁₆Cl₂]8+ A low-loss optical waveguide from a 1D europium nanocluster Exciplex-based multi-stimuli-responsive luminescent materials: photo-recoverable mechanochromic luminescence for reusable paper applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1