Unveiling the mechanism of enhanced alkaline hydrogen evolution kinetics on molybdenum–cobalt sulfides for efficient anion exchange membrane water electrolyzers†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-04-01 DOI:10.1039/D4QI03314K
Jingbin Huang, Bin Hu, Yunlin Li, Jie Zhu, Jing Jiang, Han Zhao, Jingxian Zhou, Lin Jin and Renbing Wu
{"title":"Unveiling the mechanism of enhanced alkaline hydrogen evolution kinetics on molybdenum–cobalt sulfides for efficient anion exchange membrane water electrolyzers†","authors":"Jingbin Huang, Bin Hu, Yunlin Li, Jie Zhu, Jing Jiang, Han Zhao, Jingxian Zhou, Lin Jin and Renbing Wu","doi":"10.1039/D4QI03314K","DOIUrl":null,"url":null,"abstract":"<p >The rational design of highly efficient and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) for anion exchange membrane water electrolyzers (AEMWEs) is urgently needed but remains quite challenging. Herein, we develop a core–shell-structured MoS<small><sub>2</sub></small>/CoS heterostructure (MCS-1) with an optimized shell thickness (60 nm) to address this challenge. Experimental and density functional theory (DFT) calculations disclose that the introduction of CoS into MoS<small><sub>2</sub></small> can not only promote the initial H<small><sub>2</sub></small>O adsorption/dissociation process and optimize the Gibbs free energy of hydrogen adsorption (Δ<em>G</em><small><sub>H*</sub></small>) but also induce the fast transfer of the adsorbed hydroxyl, thus avoiding the blocking and poisoning of active sites. Accordingly, MCS-1 exhibits a remarkably enhanced HER performance with lower overpotentials of 64 and 149 mV at 10 and 100 mA cm<small><sup>−2</sup></small>, respectively. More importantly, using MCS-1 as the cathode and anode to assemble an AEMWE device, we achieved a current density of 200 mA cm<small><sup>−2</sup></small> at a low voltage of 1.63 V and stable operation over 500 h in alkaline media. This work provides a new perspective on designing highly efficient and stable alkaline HER catalysts for AEMWEs.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 17","pages":" 5159-5169"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi03314k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of highly efficient and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) for anion exchange membrane water electrolyzers (AEMWEs) is urgently needed but remains quite challenging. Herein, we develop a core–shell-structured MoS2/CoS heterostructure (MCS-1) with an optimized shell thickness (60 nm) to address this challenge. Experimental and density functional theory (DFT) calculations disclose that the introduction of CoS into MoS2 can not only promote the initial H2O adsorption/dissociation process and optimize the Gibbs free energy of hydrogen adsorption (ΔGH*) but also induce the fast transfer of the adsorbed hydroxyl, thus avoiding the blocking and poisoning of active sites. Accordingly, MCS-1 exhibits a remarkably enhanced HER performance with lower overpotentials of 64 and 149 mV at 10 and 100 mA cm−2, respectively. More importantly, using MCS-1 as the cathode and anode to assemble an AEMWE device, we achieved a current density of 200 mA cm−2 at a low voltage of 1.63 V and stable operation over 500 h in alkaline media. This work provides a new perspective on designing highly efficient and stable alkaline HER catalysts for AEMWEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示了高效阴离子交换膜水电解槽中钼钴硫化物碱性析氢动力学的增强机理
合理设计高效稳定的电催化剂用于阴离子交换膜水电解槽(AEMWE)的碱性析氢反应(HER)是迫切需要的,但仍然具有很大的挑战性。为此,我们开发了具有优化壳厚(60 nm)的核壳结构MoS2/CoS异质结构(MCS-1)。实验和密度泛函数理论(DFT)计算表明,在MoS2中引入CoS不仅可以促进初始的H2O吸附/解离过程,优化氢吸附的吉布斯自由能(ΔGH*),还可以诱导吸附的羟基快速转移,从而避免活性位点的阻塞和中毒。因此,MCS-1在10和100 mA cm−2下的过电位分别为64和149 mV,具有显著增强的HER性能。更重要的是,采用MCS-1作为阴极和阳极组装的AEMWE器件,在1.63 V的低电压下,电流密度可达200 mA cm−2,在碱性介质中稳定工作500 h以上。本研究为设计高效稳定的AEMWE碱性HER催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Ultra-efficient energy transfer and near-infrared luminescence in hexagonal aluminate phosphors enabled by heterogeneous ion pairs co-doping Truss bridge-like anhydrous stacking in hybrid crystal triggers ultra-high stability and robust birefringence Bridging the gap: thymine segments to create single-strand versions of DNA2-[Ag₁₆Cl₂]8+ A low-loss optical waveguide from a 1D europium nanocluster Exciplex-based multi-stimuli-responsive luminescent materials: photo-recoverable mechanochromic luminescence for reusable paper applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1