One Stone, Two Birds Strategy for Synthesized Metallic Bi-Doped ZnWO4-Enriched Oxygen Defection for Enhancing Marine Bacterial Inactivation

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2025-03-20 DOI:10.1021/acs.cgd.4c01700
Chenglin Zhang, Jiangpeng Li, Qiuchen He, Ziming Zhao, Wenjun Jiang, Su Zhan* and Feng Zhou*, 
{"title":"One Stone, Two Birds Strategy for Synthesized Metallic Bi-Doped ZnWO4-Enriched Oxygen Defection for Enhancing Marine Bacterial Inactivation","authors":"Chenglin Zhang,&nbsp;Jiangpeng Li,&nbsp;Qiuchen He,&nbsp;Ziming Zhao,&nbsp;Wenjun Jiang,&nbsp;Su Zhan* and Feng Zhou*,&nbsp;","doi":"10.1021/acs.cgd.4c01700","DOIUrl":null,"url":null,"abstract":"<p >Deactivating the concentration of marine microorganisms is suitable and proper for ballast water treatment. In here, a promising strategy has been presented to create massive oxygen vacancies synergistic with metallic Bi nanoparticles on ZnWO<sub>4</sub> for inactivating marine bacteria in seawater, demonstrating that the paramount incorporation of metallic Bi nanoparticles and 2BZWO (Bi/ZnWO<sub>4</sub>) samples exhibits superior photocatalytic sterilization, in which the sterilization efficiency of 2BZWO is 2.83 times that of pure ZnWO<sub>4</sub>. The co-incorporation of metallic Bi nanoparticles and oxygen vacancies significantly enhanced the absorption of visible light and enrichment of the photogenerated electrons, promoting the separation of charge carriers. Moreover, first-principles calculations demonstrate that the coeffect of metallic Bi nanoparticles and oxygen vacancies guided the reconfiguration of the active sites and electrons flowing direction. Results from this study provide a creative strategy on controllable Bi/ZnWO<sub>4</sub> synthesis to manipulate the photocatalytic inactivation of marine bacteria.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 7","pages":"2071–2082 2071–2082"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01700","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deactivating the concentration of marine microorganisms is suitable and proper for ballast water treatment. In here, a promising strategy has been presented to create massive oxygen vacancies synergistic with metallic Bi nanoparticles on ZnWO4 for inactivating marine bacteria in seawater, demonstrating that the paramount incorporation of metallic Bi nanoparticles and 2BZWO (Bi/ZnWO4) samples exhibits superior photocatalytic sterilization, in which the sterilization efficiency of 2BZWO is 2.83 times that of pure ZnWO4. The co-incorporation of metallic Bi nanoparticles and oxygen vacancies significantly enhanced the absorption of visible light and enrichment of the photogenerated electrons, promoting the separation of charge carriers. Moreover, first-principles calculations demonstrate that the coeffect of metallic Bi nanoparticles and oxygen vacancies guided the reconfiguration of the active sites and electrons flowing direction. Results from this study provide a creative strategy on controllable Bi/ZnWO4 synthesis to manipulate the photocatalytic inactivation of marine bacteria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成金属双掺杂znwo4富氧脱氧增强海洋细菌灭活的一石两鸟策略
在压载水处理中,海洋微生物的灭活浓度是合适的。本文提出了一种有前景的策略,即在ZnWO4上产生与金属Bi纳米粒子协同的大量氧空缺,以灭活海水中的海洋细菌,结果表明,金属Bi纳米粒子与2BZWO (Bi/ZnWO4)样品的混合具有优异的光催化杀菌效果,其中2BZWO的杀菌效率是纯ZnWO4的2.83倍。金属铋纳米粒子与氧空位的共掺入显著增强了可见光的吸收和光生电子的富集,促进了载流子的分离。此外,第一性原理计算表明,金属铋纳米颗粒和氧空位的协同作用指导了活性位点的重新配置和电子的流动方向。本研究结果提供了一种可控的Bi/ZnWO4合成策略,以操纵海洋细菌的光催化失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Na2WO4?2H2O
麦克林
Zn(NO3)2?6H2O
麦克林
Na2WO4?2H2O
麦克林
Zn(NO3)2?6H2O
阿拉丁
NH3?H2O
阿拉丁
Bi(NO3)3?5H2O
阿拉丁
NH3?H2O
阿拉丁
Bi(NO3)3?5H2O
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Complementary Defect Tuned Modulation of Optoelectronic and Catalytic Performance in SnSe via SnCl2 and CdCl2 Doping Plastic Behavior of 3-Bromo-5-chlorobenzoic Acid: Structural, Thermal, and Plastic Deformation Analysis Structure, Spectroscopy and Enhanced 2.8 μm Laser Performance of a High-Entropy Er:GdLuYSGG Crystal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1