The memory cycle of time-series public opinion data: Validation based on deep learning prediction

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2025-04-02 DOI:10.1016/j.ipm.2025.104168
Qing Liu , Yanfeng Liu , Hosung Son
{"title":"The memory cycle of time-series public opinion data: Validation based on deep learning prediction","authors":"Qing Liu ,&nbsp;Yanfeng Liu ,&nbsp;Hosung Son","doi":"10.1016/j.ipm.2025.104168","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored the response mechanism of time-series public opinion data to sustained external stimuli based on COVID-19 pandemic and online news data (<em>N</em> = 39,753). We employed multiple deep learning models (CNN1D,CNN2D,LSTM,CNN1D-LSTM, and CNN2D-LSTM), using pandemic spread data over varying time windows (window ∈ [5–100]) as input to predict public opinion trends at different lag periods (lag ∈ [1–100]). Subsequently, we investigated the response mechanism of time-series public opinion data to external stimuli by observing the distribution patterns of effective combinations of input windows and lag periods. The findings indicate that statistical data on COVID-19 transmission contain latent knowledge about future public opinion trends. In effective prediction patterns, the size of the data input window and effective lag periods exhibit stable periodicities. This periodicity presents different timescales in the short-, medium-, and long-term, highlighting the public's near-term feedback, ongoing concern, and long-term review regarding major social issues.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104168"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325001098","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the response mechanism of time-series public opinion data to sustained external stimuli based on COVID-19 pandemic and online news data (N = 39,753). We employed multiple deep learning models (CNN1D,CNN2D,LSTM,CNN1D-LSTM, and CNN2D-LSTM), using pandemic spread data over varying time windows (window ∈ [5–100]) as input to predict public opinion trends at different lag periods (lag ∈ [1–100]). Subsequently, we investigated the response mechanism of time-series public opinion data to external stimuli by observing the distribution patterns of effective combinations of input windows and lag periods. The findings indicate that statistical data on COVID-19 transmission contain latent knowledge about future public opinion trends. In effective prediction patterns, the size of the data input window and effective lag periods exhibit stable periodicities. This periodicity presents different timescales in the short-, medium-, and long-term, highlighting the public's near-term feedback, ongoing concern, and long-term review regarding major social issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时序舆情数据的记忆周期:基于深度学习预测的验证
本研究基于COVID-19大流行和网络新闻数据(N = 39,753),探讨时间序列民意数据对持续外部刺激的反应机制。我们采用多个深度学习模型(CNN1D、CNN2D、LSTM、CNN1D-LSTM、CNN2D-LSTM),使用不同时间窗口(窗口∈[5-100])的流行病传播数据作为输入,预测不同滞后期(滞后∈[1-100])的民意趋势。随后,我们通过观察输入窗口和滞后期有效组合的分布规律,探讨了时间序列民意数据对外部刺激的响应机制。研究结果表明,COVID-19传播统计数据中隐藏着对未来舆论趋势的潜在知识。在有效的预测模式中,数据输入窗口的大小和有效滞后期表现出稳定的周期性。这种周期性呈现出短期、中期和长期不同的时间尺度,突出了公众对重大社会问题的近期反馈、持续关注和长期回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
PrQAC : Prompting LLaMA3 with question-aware image captions and answer candidates for knowledge-based VQA Reevaluating zero-shot information extraction: Sampling bias, prompting transferability and sensitivity in large language models Modality augmentation and task-aware dual-modal LoRAs for multi-task multimodal federated learning Dual-stream spatiotemporal graph convolutional networks for EEG-based human emotion recognition Grouping-enhanced personalization for federated recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1