Exploiting Locality Sensitive Hashing - Clustering and gloss feature for sign language production

IF 3 3区 计算机科学 Q2 ACOUSTICS Speech Communication Pub Date : 2025-03-28 DOI:10.1016/j.specom.2025.103227
Hu Jin , Shujun Zhang , Zilong Yang , Qi Han , Jianping Cao
{"title":"Exploiting Locality Sensitive Hashing - Clustering and gloss feature for sign language production","authors":"Hu Jin ,&nbsp;Shujun Zhang ,&nbsp;Zilong Yang ,&nbsp;Qi Han ,&nbsp;Jianping Cao","doi":"10.1016/j.specom.2025.103227","DOIUrl":null,"url":null,"abstract":"<div><div>The automatic Sign Language Production (SLP), which converts spoken language sentences into continuous sign pose sequences, is crucial for the digital interactive application of sign language. Long text sequence inputs make current deep learning-based SLP models inefficient and unable to fully take advantage of the intricate information conveyed by sign language, resulting in the fact that the generated skeleton pose sequences may not be well comprehensible or acceptable to individuals with hearing impairments. In this paper, we propose a sign language production method that utilizes Locality Sensitive Hashing-Clustering to automatically aggregate the similar and identical embedded word vectors, capture long-distance dependencies, thereby enhance the accuracy of SLP. And a multi-scale feature extraction network is designed to extract local feature of gloss and combine it with embedded text vectors to enhance text in-formation. Extensive experimental results on the challenging RWTH-PHOENIX-Weather 2014T (PHOENIX14T) dataset show that our model outperforms the baseline method.</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"171 ","pages":"Article 103227"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639325000421","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic Sign Language Production (SLP), which converts spoken language sentences into continuous sign pose sequences, is crucial for the digital interactive application of sign language. Long text sequence inputs make current deep learning-based SLP models inefficient and unable to fully take advantage of the intricate information conveyed by sign language, resulting in the fact that the generated skeleton pose sequences may not be well comprehensible or acceptable to individuals with hearing impairments. In this paper, we propose a sign language production method that utilizes Locality Sensitive Hashing-Clustering to automatically aggregate the similar and identical embedded word vectors, capture long-distance dependencies, thereby enhance the accuracy of SLP. And a multi-scale feature extraction network is designed to extract local feature of gloss and combine it with embedded text vectors to enhance text in-formation. Extensive experimental results on the challenging RWTH-PHOENIX-Weather 2014T (PHOENIX14T) dataset show that our model outperforms the baseline method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局域敏感散列聚类和光泽特征进行手语生成
手语自动生成(SLP)是将口语句子转换成连续的手势姿势序列,是手语数字交互应用的关键。长文本序列输入使得当前基于深度学习的SLP模型效率低下,无法充分利用手语传达的复杂信息,导致生成的骨骼姿势序列可能无法很好地被听力障碍患者理解或接受。本文提出了一种利用局部敏感哈希聚类自动聚合相似和相同嵌入词向量的手语生成方法,捕获长距离依赖关系,从而提高SLP的准确性。设计了一种多尺度特征提取网络,提取光泽的局部特征,并将其与嵌入的文本向量结合,增强文本信息。在具有挑战性的RWTH-PHOENIX-Weather 2014T (PHOENIX14T)数据集上的大量实验结果表明,我们的模型优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
期刊最新文献
Editorial Board MS-VBRVQ: Multi-scale variable bitrate speech residual vector quantization Hand gesture realisation of contrastive focus in real-time whisper-to-speech synthesis: Investigating the transfer from implicit to explicit control of intonation Lateral channel dynamics and F3 modulation: Quantifying para-sagittal articulation in Australian English /l/ A review on speech emotion recognition for low-resource and Indigenous languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1