Biphasic mechanochemistry of single-chain polymerization.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-04-08 Epub Date: 2025-03-31 DOI:10.1073/pnas.2418844122
Udit Kumar Chakraborty, Muwen Yang, Susil Baral, Chunming Liu, AnQi Chen, Peng Chen
{"title":"Biphasic mechanochemistry of single-chain polymerization.","authors":"Udit Kumar Chakraborty, Muwen Yang, Susil Baral, Chunming Liu, AnQi Chen, Peng Chen","doi":"10.1073/pnas.2418844122","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces can induce chemical reactions, produce chemical signals, and alter reaction kinetics. Here, using magnetic tweezers-based single-molecule force spectroscopy, we study the force effects on the ring-opening metathesis polymerization (ROMP) of single-polymer chains, during which nonequilibrium conformational entanglements can form and unravel stochastically. We find a surprising, biphasic force dependence of polymerization kinetics: The single-chain polymerization rate initially slows down with increasing stretching forces, reaching a minimum, and then accelerates at higher forces. Analysis of real-time single-chain growth trajectories allows for dissecting the polymerization process into two distinct regimes, one with and the other without entanglement formation, unveiling the biphasic force dependence in both regimes. Two different mechanisms likely operate for the biphasic dependence: a force-induced entanglement tightening and then splitting and a force-induced catalyst structural distortion that switches the reaction pathway between reactant states of different stability and reactivity. These findings and insights point to opportunities of using force to manipulate polymerization reactions and tune the physiochemical properties of synthetic polymers.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 14","pages":"e2418844122"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418844122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical forces can induce chemical reactions, produce chemical signals, and alter reaction kinetics. Here, using magnetic tweezers-based single-molecule force spectroscopy, we study the force effects on the ring-opening metathesis polymerization (ROMP) of single-polymer chains, during which nonequilibrium conformational entanglements can form and unravel stochastically. We find a surprising, biphasic force dependence of polymerization kinetics: The single-chain polymerization rate initially slows down with increasing stretching forces, reaching a minimum, and then accelerates at higher forces. Analysis of real-time single-chain growth trajectories allows for dissecting the polymerization process into two distinct regimes, one with and the other without entanglement formation, unveiling the biphasic force dependence in both regimes. Two different mechanisms likely operate for the biphasic dependence: a force-induced entanglement tightening and then splitting and a force-induced catalyst structural distortion that switches the reaction pathway between reactant states of different stability and reactivity. These findings and insights point to opportunities of using force to manipulate polymerization reactions and tune the physiochemical properties of synthetic polymers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单链聚合的双相力学化学。
机械力可以诱导化学反应、产生化学信号并改变反应动力学。在这里,我们利用基于磁镊的单分子力谱仪,研究了力对单聚合物链开环偏聚(ROMP)的影响,在这一过程中,非平衡构象纠缠会随机形成和解开。我们发现聚合动力学具有令人惊讶的双相力依赖性:单链聚合速率最初会随着拉伸力的增加而减慢,达到最小值,然后在拉伸力较大时加速。通过对实时单链生长轨迹的分析,可以将聚合过程剖析为两种不同的状态,一种是有纠缠形成的状态,另一种是没有纠缠形成的状态,从而揭示了这两种状态下的双相力依赖性。双相依赖性可能有两种不同的机制:力诱导的纠缠收紧然后分裂,以及力诱导的催化剂结构畸变在不同稳定性和反应活性的反应物状态之间切换反应路径。这些发现和见解为利用力操纵聚合反应和调整合成聚合物的理化性质提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. Proton-selective conductance and gating of the lysosomal cation channel TMEM175. QnAs with Jasmin Graham. The innate immune protein calprotectin ablates the bactericidal activity of β-lactam antibiotics. Towards CRISPR-based editing of the mitochondrial genome in yeast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1