Training-free temporal object tracking in surgical videos.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2025-06-01 Epub Date: 2025-04-01 DOI:10.1007/s11548-025-03349-6
Subhadeep Koley, Abdolrahim Kadkhodamohammadi, Santiago Barbarisi, Danail Stoyanov, Imanol Luengo
{"title":"Training-free temporal object tracking in surgical videos.","authors":"Subhadeep Koley, Abdolrahim Kadkhodamohammadi, Santiago Barbarisi, Danail Stoyanov, Imanol Luengo","doi":"10.1007/s11548-025-03349-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this paper, we present a novel approach for online object tracking in laparoscopic cholecystectomy (LC) surgical videos, targeting localisation and tracking of critical anatomical structures and instruments. Our method addresses the challenges of costly pixel-level annotations and label inconsistencies inherent in existing datasets.</p><p><strong>Methods: </strong>Leveraging the inherent object localisation capabilities of pre-trained text-to-image diffusion models, we extract representative features from surgical frames without any training or fine-tuning. Our tracking framework uses these features, along with cross-frame interactions via an affinity matrix inspired by query-key-value attention, to ensure temporal continuity in the tracking process.</p><p><strong>Results: </strong>Through a pilot study, we first demonstrate that diffusion features exhibit superior object localisation and consistent semantics across different decoder levels and temporal frames. Later, we perform extensive experiments to validate the effectiveness of our approach, showcasing its superiority over competitors for the task of temporal object tracking. Specifically, we achieve a per-pixel classification accuracy of <math><mrow><mn>79.19</mn> <mo>%</mo></mrow> </math> , mean Jaccard score of <math><mrow><mn>56.20</mn> <mo>%</mo></mrow> </math> , and mean F-score of <math><mrow><mn>79.48</mn> <mo>%</mo></mrow> </math> on the publicly available CholeSeg8K dataset.</p><p><strong>Conclusion: </strong>Our work not only introduces a novel application of text-to-image diffusion models but also contributes to advancing the field of surgical video analysis, offering a promising avenue for accurate and cost-effective temporal object tracking in minimally invasive surgery videos.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1067-1075"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03349-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: In this paper, we present a novel approach for online object tracking in laparoscopic cholecystectomy (LC) surgical videos, targeting localisation and tracking of critical anatomical structures and instruments. Our method addresses the challenges of costly pixel-level annotations and label inconsistencies inherent in existing datasets.

Methods: Leveraging the inherent object localisation capabilities of pre-trained text-to-image diffusion models, we extract representative features from surgical frames without any training or fine-tuning. Our tracking framework uses these features, along with cross-frame interactions via an affinity matrix inspired by query-key-value attention, to ensure temporal continuity in the tracking process.

Results: Through a pilot study, we first demonstrate that diffusion features exhibit superior object localisation and consistent semantics across different decoder levels and temporal frames. Later, we perform extensive experiments to validate the effectiveness of our approach, showcasing its superiority over competitors for the task of temporal object tracking. Specifically, we achieve a per-pixel classification accuracy of 79.19 % , mean Jaccard score of 56.20 % , and mean F-score of 79.48 % on the publicly available CholeSeg8K dataset.

Conclusion: Our work not only introduces a novel application of text-to-image diffusion models but also contributes to advancing the field of surgical video analysis, offering a promising avenue for accurate and cost-effective temporal object tracking in minimally invasive surgery videos.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手术视频中无需训练的时间对象跟踪。
目的:在本文中,我们提出了一种用于腹腔镜胆囊切除术(LC)手术视频中在线对象跟踪的新方法,目标是定位和跟踪关键的解剖结构和器械。我们的方法解决了现有数据集中固有的像素级注释成本高昂和标签不一致的难题:方法:利用预先训练的文本到图像扩散模型固有的对象定位能力,我们无需任何训练或微调即可从手术帧中提取代表性特征。我们的跟踪框架利用这些特征以及受查询键值注意启发的亲和矩阵进行跨帧交互,以确保跟踪过程的时间连续性:通过一项试验性研究,我们首先证明了扩散特征在不同解码器级别和时间帧中表现出卓越的物体定位能力和一致的语义。随后,我们进行了大量实验,验证了我们的方法的有效性,展示了它在时间对象跟踪任务中优于竞争对手的优势。具体来说,在公开的 CholeSeg8K 数据集上,我们的每像素分类准确率达到了 79.19 %,平均 Jaccard 分数为 56.20 %,平均 F 分数为 79.48 %:我们的工作不仅引入了文本到图像扩散模型的新应用,还为推进手术视频分析领域的发展做出了贡献,为在微创手术视频中进行准确、经济的时间对象跟踪提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Enhancing open-surgery gesture recognition using 3D pose estimation. Environmental and economic costs behind LLMs. Benchmarking variability in semantic segmentation in minimally invasive abdominal surgery. Statistical shape model-based estimation of registration error in computer-assisted total knee arthroplasty. Personalized scan path planning for robotic ultrasound in head and neck lesions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1