Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification.

IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-12-31 DOI:10.1093/biostatistics/kxaf009
Ariel Chao, Donna Spiegelman, Ashley Buchanan, Laura Forastiere
{"title":"Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification.","authors":"Ariel Chao, Donna Spiegelman, Ashley Buchanan, Laura Forastiere","doi":"10.1093/biostatistics/kxaf009","DOIUrl":null,"url":null,"abstract":"<p><p>To leverage peer influence and increase population behavioral changes, behavioral interventions often rely on peer-based strategies. A common study design that assesses such strategies is the egocentric-network randomized trial (ENRT), where index participants receive a behavioral training and are encouraged to disseminate information to their peers. Under this design, a crucial estimand of interest is the Average Spillover Effect (ASpE), which measures the impact of the intervention on participants who do not receive it, but whose outcomes may be affected by others who do. The assessment of the ASpE relies on assumptions about, and correct measurement of, interference sets within which individuals may influence one another's outcomes. It can be challenging to properly specify interference sets, such as networks in ENRTs, and when mismeasured, intervention effects estimated by existing methods will be biased. In studies where social networks play an important role in disease transmission or behavior change, correcting ASpE estimates for bias due to network misclassification is critical for accurately evaluating the full impact of interventions. We combined measurement error and causal inference methods to bias-correct the ASpE estimate for network misclassification in ENRTs, when surrogate networks are recorded in place of true ones, and validation data that relate the misclassified to the true networks are available. We investigated finite sample properties of our methods in an extensive simulation study and illustrated our methods in the HIV Prevention Trials Network (HPTN) 037 study.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To leverage peer influence and increase population behavioral changes, behavioral interventions often rely on peer-based strategies. A common study design that assesses such strategies is the egocentric-network randomized trial (ENRT), where index participants receive a behavioral training and are encouraged to disseminate information to their peers. Under this design, a crucial estimand of interest is the Average Spillover Effect (ASpE), which measures the impact of the intervention on participants who do not receive it, but whose outcomes may be affected by others who do. The assessment of the ASpE relies on assumptions about, and correct measurement of, interference sets within which individuals may influence one another's outcomes. It can be challenging to properly specify interference sets, such as networks in ENRTs, and when mismeasured, intervention effects estimated by existing methods will be biased. In studies where social networks play an important role in disease transmission or behavior change, correcting ASpE estimates for bias due to network misclassification is critical for accurately evaluating the full impact of interventions. We combined measurement error and causal inference methods to bias-correct the ASpE estimate for network misclassification in ENRTs, when surrogate networks are recorded in place of true ones, and validation data that relate the misclassified to the true networks are available. We investigated finite sample properties of our methods in an extensive simulation study and illustrated our methods in the HIV Prevention Trials Network (HPTN) 037 study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在网络成员错误分类的自我中心网络随机试验中因果溢出效应的估计与推断。
为了利用同伴影响和增加人口行为改变,行为干预往往依赖于基于同伴的策略。评估这些策略的一种常见的研究设计是自我中心网络随机试验(ENRT),在该试验中,指数参与者接受行为训练,并鼓励他们向同伴传播信息。在这种设计下,一个重要的估计是平均溢出效应(ASpE),它衡量干预对没有接受干预的参与者的影响,但其结果可能受到其他参与者的影响。ASpE的评估依赖于对干扰集的假设和对干扰集的正确测量,在这些干扰集中,个体可能会影响彼此的结果。适当地指定干扰集(例如ENRTs中的网络)可能具有挑战性,并且当测量错误时,用现有方法估计的干预效果将存在偏差。在社会网络在疾病传播或行为改变中发挥重要作用的研究中,纠正由于网络错误分类而导致的ASpE估计偏差对于准确评估干预措施的全部影响至关重要。我们将测量误差和因果推理方法结合起来,对ENRTs中网络错误分类的ASpE估计进行偏差校正,当记录替代网络代替真实网络时,并且可以获得将错误分类与真实网络联系起来的验证数据。我们在广泛的模拟研究中研究了我们方法的有限样本特性,并在HIV预防试验网络(HPTN) 037研究中说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1