RegionScan: a comprehensive R package for region-level genome-wide association testing with integration and visualization of multiple-variant and single-variant hypothesis testing.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf052
Myriam Brossard, Delnaz Roshandel, Kexin Luo, Fatemeh Yavartanoo, Andrew D Paterson, Yun J Yoo, Shelley B Bull
{"title":"RegionScan: a comprehensive R package for region-level genome-wide association testing with integration and visualization of multiple-variant and single-variant hypothesis testing.","authors":"Myriam Brossard, Delnaz Roshandel, Kexin Luo, Fatemeh Yavartanoo, Andrew D Paterson, Yun J Yoo, Shelley B Bull","doi":"10.1093/bioadv/vbaf052","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>RegionScan is designed for scalable genome-wide association testing of both multiple-variant and single-variant region-level statistics, with visualization of the results. For detection of association under various regional architectures, it implements three classes of state-of-the-art region-level tests, including multiple-variant linear/logistic regression (with and without dimension reduction), a variance-component score test, and region-level min<i>P</i> tests. RegionScan also supports the analysis of multi-allelic variants and unbalanced binary phenotypes and is compatible with widely used variant call format (VCF) files for both genotyped and imputed variants. Association testing leverages linkage disequilibrium (LD) structure in pre-defined regions, for example, LD-adaptive regions obtained by genomic partitioning, and accommodates parallel processing to improve computational and memory efficiency. Detailed outputs (with allele frequencies, variant-LD bin assignment, single/joint variant effect estimates and region-level results) and utility functions are provided to assist comparison, visualization, and interpretation of results. Thus, RegionScan analysis offers valuable insights into region-level genetic architecture, which supports a wide range of potential applications.</p><p><strong>Availability and implementation: </strong>RegionScan is freely available for download on GitHub (https://github.com/brossardMyriam/RegionScan).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf052"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: RegionScan is designed for scalable genome-wide association testing of both multiple-variant and single-variant region-level statistics, with visualization of the results. For detection of association under various regional architectures, it implements three classes of state-of-the-art region-level tests, including multiple-variant linear/logistic regression (with and without dimension reduction), a variance-component score test, and region-level minP tests. RegionScan also supports the analysis of multi-allelic variants and unbalanced binary phenotypes and is compatible with widely used variant call format (VCF) files for both genotyped and imputed variants. Association testing leverages linkage disequilibrium (LD) structure in pre-defined regions, for example, LD-adaptive regions obtained by genomic partitioning, and accommodates parallel processing to improve computational and memory efficiency. Detailed outputs (with allele frequencies, variant-LD bin assignment, single/joint variant effect estimates and region-level results) and utility functions are provided to assist comparison, visualization, and interpretation of results. Thus, RegionScan analysis offers valuable insights into region-level genetic architecture, which supports a wide range of potential applications.

Availability and implementation: RegionScan is freely available for download on GitHub (https://github.com/brossardMyriam/RegionScan).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RegionScan:一个全面的R软件包,用于区域级全基因组关联检测,具有多变体和单变体假设检验的集成和可视化。
摘要RegionScan 设计用于对多变异和单变异区域级统计进行可扩展的全基因组关联测试,并将结果可视化。为了检测各种区域架构下的关联,它实现了三类最先进的区域级测试,包括多变异线性/逻辑回归(降维或不降维)、方差成分得分测试和区域级 minP 测试。RegionScan 还支持多等位基因变异和不平衡二元表型的分析,并兼容广泛使用的基因分型和估算变异的变异调用格式(VCF)文件。关联测试利用了预定义区域中的连锁不平衡(LD)结构,例如通过基因组分区获得的 LD 自适应区域,并可进行并行处理,以提高计算和内存效率。提供了详细的输出结果(包括等位基因频率、变异-LD bin 分配、单个/连接变异效应估计和区域级结果)和实用功能,以帮助比较、可视化和解释结果。因此,RegionScan 分析为区域级遗传结构提供了宝贵的见解,支持广泛的潜在应用:RegionScan可在GitHub(https://github.com/brossardMyriam/RegionScan)上免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Perspectives in computational mass spectrometry: recent developments and key challenges. AmpWrap: a one-line fully automated amplicon metabarcoding 16S and 18S rRNA gene analysis. Mapping educational needs in bioinformatics in Brazil: adapting ISCB 3.0 competencies to a regional context. Bridging worlds: connecting glycan representations with glycoinformatics via Universal Input and a canonicalized nomenclature. tskit_arg_visualizer: interactive plotting of ancestral recombination graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1