High-Performance Sr and Mg Co-Doped LaAlO3 Proton Conducting Electrolyte for Semiconductor Ion Fuel Cells

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-01 DOI:10.1021/acs.jpcc.5c00591
Jiangyu Yu, Yingbo Zhang, Decai Zhu, Wenliang Fan, Nan Wang, Yaohui Niu, Jiali Zhou, Chengjun Zhu
{"title":"High-Performance Sr and Mg Co-Doped LaAlO3 Proton Conducting Electrolyte for Semiconductor Ion Fuel Cells","authors":"Jiangyu Yu, Yingbo Zhang, Decai Zhu, Wenliang Fan, Nan Wang, Yaohui Niu, Jiali Zhou, Chengjun Zhu","doi":"10.1021/acs.jpcc.5c00591","DOIUrl":null,"url":null,"abstract":"A major challenge for semiconductor ion fuel cells (SIFCs) is to design an electrolyte with proton transport properties so that it can maintain high ionic conductivity within relatively low temperatures. Herein, we develop a Sr and Mg codoped LaAlO<sub>3</sub> electrolyte that facilitates efficient conduction of protons and oxygen ions by enriching oxygen vacancies and reducing the activation energy of ion conduction. The optimized electrolyte shows a low activation energy of 0.31 eV and demonstrates remarkably elevated ionic conductivity at low temperatures, e.g., 0.1994 S cm<sup>–1</sup> at 550 °C. This is attributed to the significant increase in oxygen vacancies, which has been verified by XPS technology. Meanwhile, the Sr and Mg codoped LaAlO<sub>3</sub> electrolyte exhibits remarkable proton transport properties, confirmed by proton filtration experiments, which provide further evidence for the improvement of the electrolyte ionic conductivity. As a result, the fuel cell with an optimized LaAlO<sub>3</sub> electrolyte delivers an impressive peak power density of 977 mW·cm<sup>–2</sup> with an open circuit voltage (OCV) of 1.126 V at 550 °C. Particularly, compared with the fuel cell with a pure LaAlO<sub>3</sub> electrolyte, the peak power density is increased by 38.4%. The dual-ion doping strategy provides crucial insight into the further development of high ionic conductivity electrolytes for SIFCs.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"58 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00591","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge for semiconductor ion fuel cells (SIFCs) is to design an electrolyte with proton transport properties so that it can maintain high ionic conductivity within relatively low temperatures. Herein, we develop a Sr and Mg codoped LaAlO3 electrolyte that facilitates efficient conduction of protons and oxygen ions by enriching oxygen vacancies and reducing the activation energy of ion conduction. The optimized electrolyte shows a low activation energy of 0.31 eV and demonstrates remarkably elevated ionic conductivity at low temperatures, e.g., 0.1994 S cm–1 at 550 °C. This is attributed to the significant increase in oxygen vacancies, which has been verified by XPS technology. Meanwhile, the Sr and Mg codoped LaAlO3 electrolyte exhibits remarkable proton transport properties, confirmed by proton filtration experiments, which provide further evidence for the improvement of the electrolyte ionic conductivity. As a result, the fuel cell with an optimized LaAlO3 electrolyte delivers an impressive peak power density of 977 mW·cm–2 with an open circuit voltage (OCV) of 1.126 V at 550 °C. Particularly, compared with the fuel cell with a pure LaAlO3 electrolyte, the peak power density is increased by 38.4%. The dual-ion doping strategy provides crucial insight into the further development of high ionic conductivity electrolytes for SIFCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于半导体离子燃料电池的高性能硒镁共掺 LaAlO3 质子传导电解质
半导体离子燃料电池(sifc)面临的一个主要挑战是设计一种具有质子传输特性的电解质,以便在相对较低的温度下保持高离子电导率。在此,我们开发了一种Sr和Mg共掺杂的LaAlO3电解质,通过丰富氧空位和降低离子传导的活化能来促进质子和氧离子的有效传导。优化后的电解质具有0.31 eV的低活化能,在550℃时离子电导率显著提高,达到0.1994 S cm-1。这是由于氧空位的显著增加,这已被XPS技术证实。同时,通过质子过滤实验证实,Sr和Mg共掺杂的LaAlO3电解质表现出显著的质子输运特性,为提高电解质离子电导率提供了进一步的证据。结果表明,采用优化LaAlO3电解质的燃料电池在550°C时的开路电压(OCV)为1.126 V,峰值功率密度为977 mW·cm-2。特别是与使用纯LaAlO3电解质的燃料电池相比,峰值功率密度提高了38.4%。双离子掺杂策略为进一步开发高离子电导率的sifc电解质提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Polyvinyl butyral
麦克林
Mg(NO3)2
麦克林
Al(NO3)3·9H2O
麦克林
Mg(NO3)2
麦克林
Al(NO3)3·9H2O
阿拉丁
La(NO3)3·6H2O
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
XAFS Investigation of Monometallic Catalysts (Au, Pt, Pd, Ru, Cu) on Ionic Liquid-Functionalized SBA-15: Structural Characterization and Catalytic Hydrogenation of p-Nitrophenol Role of Solid–Water Interaction and Film Thickness on Nanoscale Water Evaporation Using Molecular Dynamics Monitoring Gold Nanoparticle Formation by In Situ Transient Absorption Spectroscopy The Impact of Silanol Defects on the Properties of Zeolite-Based Microporous Water Elucidation of the Difference in the Volume Expansion Anisotropy between i- and n-type Silicon Pillars during the Lithiation Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1