On the problem of Best Arm Retention

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Theoretical Computer Science Pub Date : 2025-04-01 DOI:10.1016/j.tcs.2025.115213
Houshuang Chen, Yuchen He, Chihao Zhang
{"title":"On the problem of Best Arm Retention","authors":"Houshuang Chen,&nbsp;Yuchen He,&nbsp;Chihao Zhang","doi":"10.1016/j.tcs.2025.115213","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive study on the problem of Best Arm Retention (BAR), which has recently found applications in streaming algorithms for multi-armed bandits. In the BAR problem, the goal is to retain <em>m</em> arms with the best arm included from <em>n</em> after some trials, in stochastic multi-armed bandit settings. We first investigate pure exploration for the BAR problem under different criteria, and then minimize the regret with specific constraints, in the context of further exploration in streaming algorithms.<ul><li><span>•</span><span><div>We begin by revisiting the lower bound for the <span><math><mo>(</mo><mi>ε</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-PAC algorithm for Best Arm Identification (BAI) and adapt the classical KL-divergence argument to derive optimal bounds for <span><math><mo>(</mo><mi>ε</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-PAC algorithms for BAR.</div></span></li><li><span>•</span><span><div>We further study another variant of the problem, called <em>r</em>-BAR, which requires the expected gap between the best arm and the optimal arm retained is less than <em>r</em>. We prove tight sample complexity for the problem.</div></span></li><li><span>•</span><span><div>We explore the regret minimization problem for <em>r</em>-BAR and develop algorithm beyond pure exploration. We also propose a conjecture regarding the optimal regret in this setting.</div></span></li></ul></div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1041 ","pages":"Article 115213"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525001513","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive study on the problem of Best Arm Retention (BAR), which has recently found applications in streaming algorithms for multi-armed bandits. In the BAR problem, the goal is to retain m arms with the best arm included from n after some trials, in stochastic multi-armed bandit settings. We first investigate pure exploration for the BAR problem under different criteria, and then minimize the regret with specific constraints, in the context of further exploration in streaming algorithms.
  • We begin by revisiting the lower bound for the (ε,δ)-PAC algorithm for Best Arm Identification (BAI) and adapt the classical KL-divergence argument to derive optimal bounds for (ε,δ)-PAC algorithms for BAR.
  • We further study another variant of the problem, called r-BAR, which requires the expected gap between the best arm and the optimal arm retained is less than r. We prove tight sample complexity for the problem.
  • We explore the regret minimization problem for r-BAR and develop algorithm beyond pure exploration. We also propose a conjecture regarding the optimal regret in this setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于最佳手臂保留问题
本文对最近在多臂强盗流算法中得到应用的最佳臂保留问题进行了全面的研究。在BAR问题中,目标是在随机多臂强盗设置中,经过一些试验,从n个手臂中选出最好的手臂来保留m个手臂。我们首先研究了不同条件下BAR问题的纯探索,然后在流算法进一步探索的背景下,在特定约束条件下最小化遗憾。•我们首先重新审视最佳臂识别(BAI)的(ε,δ)-PAC算法的下界,并采用经典的kl -散度论证来推导BAR的(ε,δ)-PAC算法的最优界。•我们进一步研究了该问题的另一个变体,称为r- bar,它要求保留的最佳臂和最优臂之间的期望间隙小于r。我们证明了该问题的紧密样本复杂性。•我们探索了r-BAR的遗憾最小化问题,并开发了超越纯粹探索的算法。我们还提出了一个关于这种情况下最优后悔的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
期刊最新文献
Computing the center of uncertain points on cactus graphs Pathlength of outerplanar graphs On balance properties of hypercubic billiard words Balanced substructures in bicolored graphs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1