Boosting catalytic reduction of hexavalent chromium over PdNi alloy by electron injection into unoccupied Pd d-band

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-28 DOI:10.1016/j.jcis.2025.137465
Wenxin Du, Xujia Cao, Yuan Lin, Yunyun Gui, Lijun Liu
{"title":"Boosting catalytic reduction of hexavalent chromium over PdNi alloy by electron injection into unoccupied Pd d-band","authors":"Wenxin Du,&nbsp;Xujia Cao,&nbsp;Yuan Lin,&nbsp;Yunyun Gui,&nbsp;Lijun Liu","doi":"10.1016/j.jcis.2025.137465","DOIUrl":null,"url":null,"abstract":"<div><div>Hexavalent chromium (Cr(VI)) in industrial wastewater presents a severe environmental threat. Using formic acid for Cr(VI) reduction offers an efficient and sustainable chromium remediation. While Pd reduces the energy barrier for formic acid dissociation to produce H*, the formation of strong Pd<img>H bonds hinders subsequent Cr(VI) reduction due to elevated energy levels and an increased proportion of unoccupied states in the Pd 4<em>d</em> bands. To address this challenge, we developed a PdNi/TiO<sub>2</sub> nanofibrous catalyst designed to optimize hydrogen adsorption through intermetallic electron transfer within the alloy. Experimental and theoretical results confirm that electrons from Ni are injected into the unoccupied portion of the Pd <em>d</em>-band, downshifting the <em>d</em>-band center upon alloy formation. This electron injection optimizes the electronic states of the Pd active sites, lowering the energy barrier for formic acid dissociation while weakening the Pd<img>H interaction, thereby facilitating the release of H* species. The optimized Pd<sub>6</sub>Ni<sub>4</sub>/TiO<sub>2</sub> achieves an improved turnover frequency (TOF) of 164.8 min<sup>−1</sup> for Cr(VI) reduction, outperforming most previous Pd-based catalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137465"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008562","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hexavalent chromium (Cr(VI)) in industrial wastewater presents a severe environmental threat. Using formic acid for Cr(VI) reduction offers an efficient and sustainable chromium remediation. While Pd reduces the energy barrier for formic acid dissociation to produce H*, the formation of strong PdH bonds hinders subsequent Cr(VI) reduction due to elevated energy levels and an increased proportion of unoccupied states in the Pd 4d bands. To address this challenge, we developed a PdNi/TiO2 nanofibrous catalyst designed to optimize hydrogen adsorption through intermetallic electron transfer within the alloy. Experimental and theoretical results confirm that electrons from Ni are injected into the unoccupied portion of the Pd d-band, downshifting the d-band center upon alloy formation. This electron injection optimizes the electronic states of the Pd active sites, lowering the energy barrier for formic acid dissociation while weakening the PdH interaction, thereby facilitating the release of H* species. The optimized Pd6Ni4/TiO2 achieves an improved turnover frequency (TOF) of 164.8 min−1 for Cr(VI) reduction, outperforming most previous Pd-based catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子注入Pd -带促进六价铬在PdNi合金上的催化还原
工业废水中的六价铬(Cr(VI))对环境构成严重威胁。甲酸还原Cr(VI)是一种高效、可持续的铬修复方法。虽然Pd降低了甲酸解离生成H*的能量屏障,但由于Pd - 4d带中能量水平升高和未占据态比例增加,强PdH键的形成阻碍了随后的Cr(VI)还原。为了解决这一挑战,我们开发了一种PdNi/TiO2纳米纤维催化剂,旨在通过合金内部的金属间电子转移优化氢的吸附。实验和理论结果证实,Ni的电子被注入到Pd d带的未占据部分,在合金形成时将d带中心降移。这种电子注入优化了Pd活性位点的电子态,降低了甲酸解离的能垒,同时减弱了PdH的相互作用,从而促进了H*的释放。优化后的Pd6Ni4/TiO2还原Cr(VI)的转换频率(TOF)达到164.8 min−1,优于大多数pd基催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1