Enhancing CO tolerance via molecular trapping effect: Single-atom Pt anchored on Mo2C for efficient alkaline hydrogen oxidation reaction

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-31 DOI:10.1016/j.jcis.2025.137489
Xiaokun Yang , Wenjie Yu , Yanfeng Zhang , Chuanpeng Qiao , Lili Liu , Yongfang Zhang , Qirui Li , Mengfei Mou , Rutao Wang , Xiangsen Yuan , Zhihao Wang , Liting Yan , Xuebo Zhao
{"title":"Enhancing CO tolerance via molecular trapping effect: Single-atom Pt anchored on Mo2C for efficient alkaline hydrogen oxidation reaction","authors":"Xiaokun Yang ,&nbsp;Wenjie Yu ,&nbsp;Yanfeng Zhang ,&nbsp;Chuanpeng Qiao ,&nbsp;Lili Liu ,&nbsp;Yongfang Zhang ,&nbsp;Qirui Li ,&nbsp;Mengfei Mou ,&nbsp;Rutao Wang ,&nbsp;Xiangsen Yuan ,&nbsp;Zhihao Wang ,&nbsp;Liting Yan ,&nbsp;Xuebo Zhao","doi":"10.1016/j.jcis.2025.137489","DOIUrl":null,"url":null,"abstract":"<div><div>Developing highly efficient, stable, and CO-tolerant electrocatalysts for hydrogen oxidation reaction (HOR) remains a critical challenge for practical proton/anion exchange membrane fuel cells. Here in, an atomically dispersed platinum (Pt) on Mo<sub>2</sub>C nanoparticles supported on nitrogen-doped carbon (Pt<sub>SA</sub>Mo<sub>2</sub>C-NC) with a unique yolk-shell structure is presented as a highly efficient and stable catalyst for HOR. The Pt<sub>SA</sub>Mo<sub>2</sub>C-NC catalyst demonstrates remarkable HOR performance, with a high exchange current density of 2.7 mA cm<sup>−2</sup> and a mass activity of 2.15 A/mg<sub>Pt</sub> at 50 mV (vs. RHE), which are 1.5 and 18 times greater than those of the 40 % commercial Pt/C catalyst, respectively. Furthermore, the unique Pt<sub>SA</sub>Mo<sub>2</sub>C-NC structure exhibits superior CO tolerance at H<sub>2</sub>/1,000 ppm CO, significantly outperforming commercial Pt/C catalysts. Density functional theory (DFT) calculations indicate that the introduction of Mo<sub>2</sub>C forms a strong electronic interaction with Pt, which decreases the electron density around the Pt atoms and shifts the d-band center away from the Fermi level. This results in a reduction of the *H adsorption energy and an optimization of the *OH adsorption energy in Pt<sub>SA</sub>Mo<sub>2</sub>C-NC. In addition, by calculating the CO adsorption energy, it was found that Mo<sub>2</sub>C exhibits strong CO adsorption ability, which generating a molecular trapping effect, thereby protecting the Pt active sites from poisoning. The strong metal-support electronic interaction significantly enhances the catalytic activity, stability, and CO tolerance of the material, providing a new strategy for developing catalysts with these desirable properties.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137489"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972500880X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing highly efficient, stable, and CO-tolerant electrocatalysts for hydrogen oxidation reaction (HOR) remains a critical challenge for practical proton/anion exchange membrane fuel cells. Here in, an atomically dispersed platinum (Pt) on Mo2C nanoparticles supported on nitrogen-doped carbon (PtSAMo2C-NC) with a unique yolk-shell structure is presented as a highly efficient and stable catalyst for HOR. The PtSAMo2C-NC catalyst demonstrates remarkable HOR performance, with a high exchange current density of 2.7 mA cm−2 and a mass activity of 2.15 A/mgPt at 50 mV (vs. RHE), which are 1.5 and 18 times greater than those of the 40 % commercial Pt/C catalyst, respectively. Furthermore, the unique PtSAMo2C-NC structure exhibits superior CO tolerance at H2/1,000 ppm CO, significantly outperforming commercial Pt/C catalysts. Density functional theory (DFT) calculations indicate that the introduction of Mo2C forms a strong electronic interaction with Pt, which decreases the electron density around the Pt atoms and shifts the d-band center away from the Fermi level. This results in a reduction of the *H adsorption energy and an optimization of the *OH adsorption energy in PtSAMo2C-NC. In addition, by calculating the CO adsorption energy, it was found that Mo2C exhibits strong CO adsorption ability, which generating a molecular trapping effect, thereby protecting the Pt active sites from poisoning. The strong metal-support electronic interaction significantly enhances the catalytic activity, stability, and CO tolerance of the material, providing a new strategy for developing catalysts with these desirable properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分子捕获效应增强CO耐受性:单原子Pt锚定在Mo2C上进行高效碱性氢氧化反应
开发高效、稳定、耐co的氢氧化反应电催化剂仍然是实用质子/阴离子交换膜燃料电池面临的关键挑战。本文提出了一种具有独特蛋黄壳结构的原子分散铂(Pt)负载在掺杂氮碳(PtSAMo2C-NC)上的Mo2C纳米颗粒作为高效稳定的HOR催化剂。PtSAMo2C-NC催化剂具有优异的HOR性能,交换电流密度高达2.7 mA cm−2,50 mV时的质量活性为2.15 a /mgPt(相对于RHE),分别是40% Pt/C商用催化剂的1.5倍和18倍。此外,独特的PtSAMo2C-NC结构在H2/1,000 ppm CO下表现出优异的CO耐受性,显著优于商用Pt/C催化剂。密度泛函理论(DFT)计算表明,Mo2C的引入与Pt形成了强烈的电子相互作用,降低了Pt原子周围的电子密度,使d带中心远离费米能级。这使得PtSAMo2C-NC中的*H吸附能降低,*OH吸附能优化。此外,通过计算CO吸附能,发现Mo2C具有较强的CO吸附能力,产生分子诱捕效应,从而保护Pt活性位点不受毒害。强金属-支撑电子相互作用显著提高了材料的催化活性、稳定性和CO耐受性,为开发具有这些理想性能的催化剂提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Cupric sulfate anhydrous
麦克林
2-methylimidazole
麦克林
Chloroplatinic acid hexahydrate
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1