High-rate LiFe0.75Mn0.25PO4/C cathode material for lithium-ion battery was prepared by oriented growth of precursor crystal plane

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-28 DOI:10.1016/j.jcis.2025.137436
Yu Zhang , Rong Li , Qi Guo , Fangxiang Song , Kang Kai , Qianlin Chen
{"title":"High-rate LiFe0.75Mn0.25PO4/C cathode material for lithium-ion battery was prepared by oriented growth of precursor crystal plane","authors":"Yu Zhang ,&nbsp;Rong Li ,&nbsp;Qi Guo ,&nbsp;Fangxiang Song ,&nbsp;Kang Kai ,&nbsp;Qianlin Chen","doi":"10.1016/j.jcis.2025.137436","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of the lithium-ion battery as a subject of intense research interest has propelled of high-energy–density LiFe<sub>x</sub>Mn<sub>1-x</sub>PO<sub>4</sub>(LFMP) becoming a prominent area of investigation. However, the material suffers from inherently low electronic conductivity due to its olivine structure, which imposes severe constraints on electron transport kinetics, thus adversely impacting both charge–discharge rates and overall electrochemical performance. We propose an innovative protocol for high-precision reaction mechanism modulation. By employing Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O with strategically enhanced (020) crystal plane exposure as a pivotal precursor, we synthesized LiFe<sub>0.75</sub>Mn<sub>0.25</sub>PO<sub>4</sub>/C cathode material featuring a shorter ion diffusion path. Comprehensive characterization coupled with electrochemical validation revealed that the resultant cathode material exhibits a smaller particle size and more uniform morphology, along with a superior rate performance and cycle stability. The discharge specific capacity is 144.1 mAh g<sup>−1</sup> and the capacity retention reaches 96.1 % over 1000 cycles at a 1C rate. The findings demonstrate that the regulation of the growth trajectory of the precursor Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O crystal plane can markedly enhance the electronic conductivity and Li<sup>+</sup> mobility of the cathode material, thereby optimising the electrochemical performance.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137436"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008276","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of the lithium-ion battery as a subject of intense research interest has propelled of high-energy–density LiFexMn1-xPO4(LFMP) becoming a prominent area of investigation. However, the material suffers from inherently low electronic conductivity due to its olivine structure, which imposes severe constraints on electron transport kinetics, thus adversely impacting both charge–discharge rates and overall electrochemical performance. We propose an innovative protocol for high-precision reaction mechanism modulation. By employing Fe3(PO4)2·8H2O with strategically enhanced (020) crystal plane exposure as a pivotal precursor, we synthesized LiFe0.75Mn0.25PO4/C cathode material featuring a shorter ion diffusion path. Comprehensive characterization coupled with electrochemical validation revealed that the resultant cathode material exhibits a smaller particle size and more uniform morphology, along with a superior rate performance and cycle stability. The discharge specific capacity is 144.1 mAh g−1 and the capacity retention reaches 96.1 % over 1000 cycles at a 1C rate. The findings demonstrate that the regulation of the growth trajectory of the precursor Fe3(PO4)2·8H2O crystal plane can markedly enhance the electronic conductivity and Li+ mobility of the cathode material, thereby optimising the electrochemical performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用前驱体晶面定向生长法制备了锂离子电池正极材料LiFe0.75Mn0.25PO4/C
随着锂离子电池的兴起,高能量密度LiFexMn1-xPO4(LFMP)成为研究的热点。然而,由于其橄榄石结构,该材料具有固有的低电子导电性,这对电子传递动力学施加了严重的限制,从而对充放电速率和整体电化学性能产生不利影响。我们提出了一种创新的高精度反应机理调制方案。以Fe3(PO4)2·8H2O策略性增强(020)晶面曝光为关键前驱体,合成了离子扩散路径更短的LiFe0.75Mn0.25PO4/C正极材料。综合表征和电化学验证表明,合成的正极材料具有更小的粒径和更均匀的形貌,以及优越的倍率性能和循环稳定性。放电比容量为144.1 mAh g−1,在1C倍率下,1000次循环的容量保持率达到96.1%。研究结果表明,调节前驱体Fe3(PO4)2·8H2O晶面的生长轨迹可以显著提高正极材料的电子导电性和Li+迁移率,从而优化正极材料的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
glucose
麦克林
Li2CO3
麦克林
cetyltrimethylammonium bromide (CTAB)
麦克林
H3PO4
麦克林
Fe
麦克林
glucose
麦克林
Li2CO3
麦克林
cetyltrimethylammonium bromide (CTAB)
麦克林
H3PO4
麦克林
Fe
阿拉丁
N-methyl-2-pyrrolidone
阿拉丁
Mn(H2PO4)2·2H2O
阿拉丁
LiOH·H2O
阿拉丁
Mn(H2PO4)2·2H2O
阿拉丁
LiOH·H2O
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1