Topology-preserving and structure-aware (hyper)graph contrastive learning for node classification

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-04-03 DOI:10.1007/s10489-025-06491-5
Minhao Zou, Zhongxue Gan, Yutong Wang, Junheng Zhang, Chun Guan, Siyang Leng
{"title":"Topology-preserving and structure-aware (hyper)graph contrastive learning for node classification","authors":"Minhao Zou,&nbsp;Zhongxue Gan,&nbsp;Yutong Wang,&nbsp;Junheng Zhang,&nbsp;Chun Guan,&nbsp;Siyang Leng","doi":"10.1007/s10489-025-06491-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, graph contrastive learning (GCL) has attracted considerable attention, establishing a new paradigm for learning graph representations in the absence of human annotations. While notable advancements have been made, simultaneous consideration of both graphs and hypergraphs remains rare. This limitation arises because graphs and hypergraphs encode connectivity differently, making it challenging to develop a unified structure augmentation strategy. Conventional structure augmentation methods like adding or removing edges risk imperiling intrinsic topological traits and introducing adverse distortions such as disconnected subgraphs or isolated nodes. In this work, we propose a framework of contrastive learning on graphs and hypergraphs, named as UniGCL, to address these challenges by leveraging a unified adjacency representation that enables simultaneous modeling of pairwise and higher-order relationships. In particular, two structure augmentation methods are developed to perturb graph structure weights instead of altering connectivity, thereby preserving both graph and hypergraph topology while generating diverse augmented views. Furthermore, a structure-aware contrastive loss is proposed, which incorporates gradient perturbation techniques to enhance the model’s ability to capture fine-grained structural dependencies in (hyper)graphs. Extensive experiments are conducted on six real-world graph datasets and nine representative hypergraph datasets to evaluate the performance of the proposed framework. The results demonstrate that UniGCL achieves superior node classification performance compared to the advanced graph and hypergraph contrastive learning methods, across datasets with different homophilic extents and limited annotations. Additionally, ablation studies validate the effectiveness of our structure-preserving augmentations and structure-aware contrastive loss in enhancing performance.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06491-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, graph contrastive learning (GCL) has attracted considerable attention, establishing a new paradigm for learning graph representations in the absence of human annotations. While notable advancements have been made, simultaneous consideration of both graphs and hypergraphs remains rare. This limitation arises because graphs and hypergraphs encode connectivity differently, making it challenging to develop a unified structure augmentation strategy. Conventional structure augmentation methods like adding or removing edges risk imperiling intrinsic topological traits and introducing adverse distortions such as disconnected subgraphs or isolated nodes. In this work, we propose a framework of contrastive learning on graphs and hypergraphs, named as UniGCL, to address these challenges by leveraging a unified adjacency representation that enables simultaneous modeling of pairwise and higher-order relationships. In particular, two structure augmentation methods are developed to perturb graph structure weights instead of altering connectivity, thereby preserving both graph and hypergraph topology while generating diverse augmented views. Furthermore, a structure-aware contrastive loss is proposed, which incorporates gradient perturbation techniques to enhance the model’s ability to capture fine-grained structural dependencies in (hyper)graphs. Extensive experiments are conducted on six real-world graph datasets and nine representative hypergraph datasets to evaluate the performance of the proposed framework. The results demonstrate that UniGCL achieves superior node classification performance compared to the advanced graph and hypergraph contrastive learning methods, across datasets with different homophilic extents and limited annotations. Additionally, ablation studies validate the effectiveness of our structure-preserving augmentations and structure-aware contrastive loss in enhancing performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于节点分类的拓扑保护和结构感知(超)图对比学习
最近,图对比学习(GCL)引起了人们的广泛关注,它为在没有人工注释的情况下学习图表示建立了一种新的范式。虽然已经取得了显著的进步,但同时考虑图和超图的情况仍然很少。出现这种限制是因为图和超图对连通性的编码不同,这使得开发统一的结构增强策略具有挑战性。传统的结构增强方法,如增加或去除边缘,可能会危及固有的拓扑特征,并引入不利的扭曲,如断开的子图或孤立的节点。在这项工作中,我们提出了一个图和超图的对比学习框架,称为UniGCL,通过利用统一的邻接表示来解决这些挑战,该表示可以同时对成对和高阶关系进行建模。特别地,开发了两种结构增强方法来扰动图结构权值而不改变连通性,从而在生成不同增强视图的同时保留图和超图拓扑。此外,提出了一种结构感知的对比损失,它结合了梯度摄动技术来增强模型在(超)图中捕获细粒度结构依赖关系的能力。在六个真实世界的图数据集和九个具有代表性的超图数据集上进行了广泛的实验,以评估所提出框架的性能。结果表明,UniGCL在具有不同同质扩展和有限注释的数据集上取得了优于高级图和超图对比学习方法的节点分类性能。此外,消融研究验证了我们的结构保留增强和结构感知对比损失在提高性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Attribute reduction based on generalized weighted neighborhood rough sets in generalized interval set information systems AMCNN: attention-based multi-column neural network for multivariate multi-step time series prediction Spatiotemporal decoupling-gated transformer: modeling high-dimensional coupling for traffic flow prediction Revisiting multi-view semi-supervised classification: a reinforcement learning perspective Socially aware navigation for mobile robots: a survey on deep reinforcement learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1