{"title":"TCnet: A Novel Strategy to Predict Target Combination of Alzheimer's Disease via Network-Based Methods.","authors":"Chengyuan Yue, Baiyu Chen, Fei Pan, Ze Wang, Hongbo Yu, Guixia Liu, Weihua Li, Rui Wang, Yun Tang","doi":"10.1021/acs.jcim.5c00172","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurodegenerative disorder with an unclear pathogenesis; the traditional ″single gene-single target-single drug″ strategy is insufficient for effective treatment. This study explores a novel strategy for the multitarget therapy of AD by integrating multiomics data and employing network analysis. Different from conventional single-target methods, TCnet adopts a mechanism-driven strategy, utilizing multiomics data to decompose disease mechanisms, construct potential target combinations, and prioritize the optimal combinations using a scoring function. TCnet not only advances our understanding of disease mechanisms but also facilitates large-scale drug screening. This approach was further employed to screen active compounds from Huang-Lian-Jie-Du-Tang (HLJDT), identifying quercetin as a candidate targeting GSK3β and ADAM17. Subsequent <i>in vitro</i> experiments confirmed the neuroprotective and anti-inflammatory effects of quercetin. Overall, TCnet offers a promising approach for predicting target combinations and provides new insights and directions for drug discovery in AD.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3866-3878"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with an unclear pathogenesis; the traditional ″single gene-single target-single drug″ strategy is insufficient for effective treatment. This study explores a novel strategy for the multitarget therapy of AD by integrating multiomics data and employing network analysis. Different from conventional single-target methods, TCnet adopts a mechanism-driven strategy, utilizing multiomics data to decompose disease mechanisms, construct potential target combinations, and prioritize the optimal combinations using a scoring function. TCnet not only advances our understanding of disease mechanisms but also facilitates large-scale drug screening. This approach was further employed to screen active compounds from Huang-Lian-Jie-Du-Tang (HLJDT), identifying quercetin as a candidate targeting GSK3β and ADAM17. Subsequent in vitro experiments confirmed the neuroprotective and anti-inflammatory effects of quercetin. Overall, TCnet offers a promising approach for predicting target combinations and provides new insights and directions for drug discovery in AD.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.