TCnet: A Novel Strategy to Predict Target Combination of Alzheimer's Disease via Network-Based Methods.

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-04-14 Epub Date: 2025-04-02 DOI:10.1021/acs.jcim.5c00172
Chengyuan Yue, Baiyu Chen, Fei Pan, Ze Wang, Hongbo Yu, Guixia Liu, Weihua Li, Rui Wang, Yun Tang
{"title":"TCnet: A Novel Strategy to Predict Target Combination of Alzheimer's Disease via Network-Based Methods.","authors":"Chengyuan Yue, Baiyu Chen, Fei Pan, Ze Wang, Hongbo Yu, Guixia Liu, Weihua Li, Rui Wang, Yun Tang","doi":"10.1021/acs.jcim.5c00172","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurodegenerative disorder with an unclear pathogenesis; the traditional ″single gene-single target-single drug″ strategy is insufficient for effective treatment. This study explores a novel strategy for the multitarget therapy of AD by integrating multiomics data and employing network analysis. Different from conventional single-target methods, TCnet adopts a mechanism-driven strategy, utilizing multiomics data to decompose disease mechanisms, construct potential target combinations, and prioritize the optimal combinations using a scoring function. TCnet not only advances our understanding of disease mechanisms but also facilitates large-scale drug screening. This approach was further employed to screen active compounds from Huang-Lian-Jie-Du-Tang (HLJDT), identifying quercetin as a candidate targeting GSK3β and ADAM17. Subsequent <i>in vitro</i> experiments confirmed the neuroprotective and anti-inflammatory effects of quercetin. Overall, TCnet offers a promising approach for predicting target combinations and provides new insights and directions for drug discovery in AD.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3866-3878"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a complex neurodegenerative disorder with an unclear pathogenesis; the traditional ″single gene-single target-single drug″ strategy is insufficient for effective treatment. This study explores a novel strategy for the multitarget therapy of AD by integrating multiomics data and employing network analysis. Different from conventional single-target methods, TCnet adopts a mechanism-driven strategy, utilizing multiomics data to decompose disease mechanisms, construct potential target combinations, and prioritize the optimal combinations using a scoring function. TCnet not only advances our understanding of disease mechanisms but also facilitates large-scale drug screening. This approach was further employed to screen active compounds from Huang-Lian-Jie-Du-Tang (HLJDT), identifying quercetin as a candidate targeting GSK3β and ADAM17. Subsequent in vitro experiments confirmed the neuroprotective and anti-inflammatory effects of quercetin. Overall, TCnet offers a promising approach for predicting target combinations and provides new insights and directions for drug discovery in AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCnet:一种基于网络方法预测阿尔茨海默病靶点组合的新策略。
阿尔茨海默病(AD)是一种复杂的神经退行性疾病,发病机制尚不清楚;传统的″单基因-单靶点-单药物″策略不足以有效治疗。本研究通过整合多组学数据和网络分析,探索了一种新的AD多靶点治疗策略。与传统的单靶点方法不同,TCnet采用机制驱动策略,利用多组学数据分解疾病机制,构建潜在的靶点组合,并利用评分函数对最优组合进行排序。TCnet不仅促进了我们对疾病机制的理解,而且促进了大规模的药物筛选。利用该方法进一步筛选黄连解毒汤(HLJDT)中的活性化合物,确定槲皮素为靶向GSK3β和ADAM17的候选化合物。随后的体外实验证实了槲皮素的神经保护和抗炎作用。总的来说,TCnet提供了一种很有前景的预测靶点组合的方法,并为阿尔茨海默病的药物发现提供了新的见解和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Application of Semiempirical Quantum Mechanical Methods To Accurately Estimate Ligand-Binding Structure in Biological Systems: Protein Kinase Case Study. Curated and Structure-Based Drug-Target Interactions Improve Underprediction of Drug Side Effects in Network Models. Computational Framework for Causal Inference in Molecular Dynamics Analysis of Lipid-Protein Interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1