Lysosomal enzyme processing and trafficking in the social amoeba Dictyostelium discoideum.

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Cell Biology Pub Date : 2025-01-01 DOI:10.1139/bcb-2025-0062
Sean V Condie, William D Kim, Robert J Huber
{"title":"Lysosomal enzyme processing and trafficking in the social amoeba <i>Dictyostelium discoideum</i>.","authors":"Sean V Condie, William D Kim, Robert J Huber","doi":"10.1139/bcb-2025-0062","DOIUrl":null,"url":null,"abstract":"<p><p><i>Dictyostelium discoideum</i> is a single-celled protist that undergoes multicellular development in response to nutrient deprivation. For close to a century, <i>D. discoideum</i> has been used as a model system for studying conserved cellular and developmental processes such as chemotaxis, cell adhesion, and cell differentiation. In the later decades of the 20th century, intensive research efforts examined the synthesis, trafficking, and activity of lysosomal enzymes in <i>D. discoideum</i>. Subsequent work revealed that lysosomes are essential for all stages of the <i>D. discoideum</i> life cycle and the genome encodes dozens of homologs of human lysosomal enzymes, including those associated with lysosomal storage diseases. Additionally, protocols for examining the trafficking and activity of lysosomal enzymes in <i>D. discoideum</i> are well-established. Here, we provide a comprehensive up-to-date review that summarizes our current knowledge of lysosomal enzyme processing and trafficking in <i>D. discoideum</i>, with an eye towards re-establishing <i>D. discoideum</i> as a model eukaryote for studying the functions of conserved lysosomal enzymes and the pathways that regulate their trafficking.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-11"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2025-0062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dictyostelium discoideum is a single-celled protist that undergoes multicellular development in response to nutrient deprivation. For close to a century, D. discoideum has been used as a model system for studying conserved cellular and developmental processes such as chemotaxis, cell adhesion, and cell differentiation. In the later decades of the 20th century, intensive research efforts examined the synthesis, trafficking, and activity of lysosomal enzymes in D. discoideum. Subsequent work revealed that lysosomes are essential for all stages of the D. discoideum life cycle and the genome encodes dozens of homologs of human lysosomal enzymes, including those associated with lysosomal storage diseases. Additionally, protocols for examining the trafficking and activity of lysosomal enzymes in D. discoideum are well-established. Here, we provide a comprehensive up-to-date review that summarizes our current knowledge of lysosomal enzyme processing and trafficking in D. discoideum, with an eye towards re-establishing D. discoideum as a model eukaryote for studying the functions of conserved lysosomal enzymes and the pathways that regulate their trafficking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群居变形虫盘齿钢齿的溶酶体酶加工和运输。
盘状盘基骨柱是一种单细胞原生生物,在营养剥夺的情况下经历多细胞发育。近一个世纪以来,盘状棘球蚴一直被用作研究保守的细胞和发育过程的模型系统,如趋化性、细胞粘附和细胞分化。在以后的几十年的20世纪,深入研究了合成、走私、并在d . discoideum溶酶体酶的活性。后续的工作显示,溶酶体是必不可少的d discoideum生命周期的所有阶段和人类基因组编码几十个同系物的溶酶体酶,包括那些与溶酶体储存疾病相关。此外,协议检查走私和溶酶体酶的活性在d . discoideum是行之有效的。在这里,我们提供一个综合的评估,总结了当前知识的溶酶体酶处理和贩卖d discoideum,以期重建d discoideum作为研究模型真核生物的功能守恒的溶酶体酶和通路调节他们的交易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry and Cell Biology
Biochemistry and Cell Biology 生物-生化与分子生物学
CiteScore
6.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.
期刊最新文献
In vitro and in vivo anticancer efficacy of the combination of Actinomycin D and resveratrol. An improved version of the early histone HCl extraction protocol. Chelerythrine alleviates inflammation and angiogenesis in a mouse rosacea model via suppressing the NF-κB/p38 MAPK/STAT3 pathways. Note of appreciation. USP54 regulates the malignancy and autophagy in nasopharyngeal cancer cells by modulating ULK1 ubiquitination levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1