Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters

IF 3.8 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM International Journal of Obesity Pub Date : 2025-04-01 DOI:10.1038/s41366-025-01761-1
Youngha Choi, Kanghyuck Lee, Eun Gyung Seol, Joon Young Kim, Eun Byoul Lee, Hyun Wook Chae, Taehoon Ko, Kyungchul Song
{"title":"Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters","authors":"Youngha Choi, Kanghyuck Lee, Eun Gyung Seol, Joon Young Kim, Eun Byoul Lee, Hyun Wook Chae, Taehoon Ko, Kyungchul Song","doi":"10.1038/s41366-025-01761-1","DOIUrl":null,"url":null,"abstract":"Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical impedance analysis (BIA) parameters, highlighting its ability to handle complex, nonlinear variable relationships more effectively than traditional methods such as logistic regression. The study included 359 youths from the Korea National Health and Nutrition Examination Survey (KNHANES; 16 MS, 343 normal) and 174 youths from real-world clinical data (66 MS, 108 normal). Model 1 used anthropometric data, Model 2 used BIA parameters, and Model 3 combined both. The eXtreme Gradient Boosting trained the models, and area under the receiver operating characteristic curve (AUC) evaluated performance. Shapley value analysis was applied to assess the contribution of each parameter to the model’s prediction. The AUCs for Models 1, 2, and 3 were 0.75, 0.66, and 0.90, respectively, in the KNHANES dataset, and 0.56, 0.61, and 0.74, respectively, in the real-world dataset. In pairwise comparison, Model 3 outperformed both Model 1 and Model 2 in both the KNHANES dataset (Model 1 vs. Model 3, p = 0.026; Model 2 vs. Model 3, p = 0.033) and the real-world dataset (Model 1 vs. Model 3, p = 0.035; Model 2 vs. Model 3, p = 0.008). Body fat mass was identified as the most significant contributor to Model 3. The integrated model using both anthropometric and BIA parameters demonstrated strong predictability for pediatric MS, underlining its potential as an effective screening tool for MS in both clinical and general populations.","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":"49 6","pages":"1159-1165"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41366-025-01761-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical impedance analysis (BIA) parameters, highlighting its ability to handle complex, nonlinear variable relationships more effectively than traditional methods such as logistic regression. The study included 359 youths from the Korea National Health and Nutrition Examination Survey (KNHANES; 16 MS, 343 normal) and 174 youths from real-world clinical data (66 MS, 108 normal). Model 1 used anthropometric data, Model 2 used BIA parameters, and Model 3 combined both. The eXtreme Gradient Boosting trained the models, and area under the receiver operating characteristic curve (AUC) evaluated performance. Shapley value analysis was applied to assess the contribution of each parameter to the model’s prediction. The AUCs for Models 1, 2, and 3 were 0.75, 0.66, and 0.90, respectively, in the KNHANES dataset, and 0.56, 0.61, and 0.74, respectively, in the real-world dataset. In pairwise comparison, Model 3 outperformed both Model 1 and Model 2 in both the KNHANES dataset (Model 1 vs. Model 3, p = 0.026; Model 2 vs. Model 3, p = 0.033) and the real-world dataset (Model 1 vs. Model 3, p = 0.035; Model 2 vs. Model 3, p = 0.008). Body fat mass was identified as the most significant contributor to Model 3. The integrated model using both anthropometric and BIA parameters demonstrated strong predictability for pediatric MS, underlining its potential as an effective screening tool for MS in both clinical and general populations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人体测量学和生物电阻抗参数预测儿童代谢综合征的机器学习模型的开发和验证。
目的:代谢综合征(MS)是心血管疾病的危险因素之一,其发病率在儿童和青少年中不断上升。本研究利用人体测量和生物电阻抗分析(BIA)参数开发了一种机器学习模型来预测代谢综合征,与逻辑回归等传统方法相比,该模型能够更有效地处理复杂的非线性变量关系:研究对象包括韩国国民健康与营养调查(KNHANES)中的 359 名青少年(16 名多发性硬化症患者,343 名正常人)和真实世界临床数据中的 174 名青少年(66 名多发性硬化症患者,108 名正常人)。模型 1 使用人体测量数据,模型 2 使用 BIA 参数,模型 3 将两者结合使用。eXtreme 梯度提升技术对模型进行了训练,接收者工作特征曲线下面积(AUC)对模型的性能进行了评估。沙普利值分析用于评估每个参数对模型预测的贡献:在 KNHANES 数据集中,模型 1、2 和 3 的 AUC 分别为 0.75、0.66 和 0.90;在真实世界数据集中,AUC 分别为 0.56、0.61 和 0.74。在配对比较中,模型 3 在 KNHANES 数据集(模型 1 vs. 模型 3,p = 0.026;模型 2 vs. 模型 3,p = 0.033)和真实世界数据集(模型 1 vs. 模型 3,p = 0.035;模型 2 vs. 模型 3,p = 0.008)中的表现均优于模型 1 和模型 2。体脂量被认为是模型 3 的最大贡献因素:结论:使用人体测量和 BIA 参数的综合模型对小儿多发性硬化症具有很强的预测能力,强调了其作为临床和普通人群多发性硬化症有效筛查工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Obesity
International Journal of Obesity 医学-内分泌学与代谢
CiteScore
10.00
自引率
2.00%
发文量
221
审稿时长
3 months
期刊介绍: The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders. We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.
期刊最新文献
The effect of resveratrol supplementation on anthropometric indices, adiponectin and leptin levels in individuals with overweight and obesity: a graded, systematic review and meta-analysis of randomized controlled trials. A prediction model for childhood obesity risk based on maternal thyroid status and related parameters using machine learning: a mother-newborn-offspring study in a mild-to-moderate iodine deficiency area. Genetic and environmental effects on weight gain from young adulthood to old age and its association with body mass index in early young adulthood: an individual-based pooled analysis of 16 twin cohorts. Postbiotics: emerging regulatory mechanisms and therapeutic applications in obesity and its complications. Racial and ethnic differences in controlling risk factors for cardiovascular disease among adults with obesity, 1999-2023.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1