Hsien Wei Huang, Shengjia Wu, Shufang Liu, Dhaval K Shah
{"title":"Effect of FcRn Binding on Monoclonal Antibody Disposition in the Brain.","authors":"Hsien Wei Huang, Shengjia Wu, Shufang Liu, Dhaval K Shah","doi":"10.1208/s12248-025-01060-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the role of FcRn in brain disposition of monoclonal antibodies. Human FcRn (hFcRn) expressing mice and different FcRn binding variants of a non-target binding antibody trastuzumab (WT) were used for the investigation. The FcRn binding mutations were: YTE, YPY, YQAY, and IHH. YQAY and YPY mutants have enhanced FcRn binding at both neutral and acidic pH (7+/6+). YTE mutant has enhanced FcRn binding at only acidic pH (7-/6+), and IHH mutant has no FcRn binding (7-/6-). The pharmacokinetics (PK) of these mutants in plasma, brain interstitial fluid (ISF), and brain homogenate were measured following intravenous administration. The area under the concentration-time curve (AUC) for all PK profiles and ratios of brain and plasma AUCs were calculated for comparison. Results showed that WT antibody had brain:plasma AUC ratio of 0.70% and ISF:plasma AUC ratio of 0.59%. Among all mutants, YPY exhibited the highest AUC ratio for brain (3.86%) and ISF (3.49%). YQAY had relatively high AUC ratios of 1.49% in the brain and 0.81% in ISF. YTE showed a similar AUC ratio in the brain (0.60%) and ISF (0.62%) compared to WT, while IHH exhibited similar AUC ratio in the brain (0.52%) but higher AUC ratio in ISF (2.48%). The results suggest that binding to FcRn at neutral and acidic pH facilitates transcytosis of antibody into the brain. Just increasing the binding to FcRn at acidic pH does not impact the disposition of antibody in the brain. Complete removal of FcRn binding might lead to prolonged retention of antibody in ISF. Together, these data demonstrate that FcRn significantly affects brain disposition of antibody, and engineering of Fc domain to alter the binding of antibody to FcRn may be exploited to achieve better exposure of antibodies in the brain.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 3","pages":"72"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01060-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the role of FcRn in brain disposition of monoclonal antibodies. Human FcRn (hFcRn) expressing mice and different FcRn binding variants of a non-target binding antibody trastuzumab (WT) were used for the investigation. The FcRn binding mutations were: YTE, YPY, YQAY, and IHH. YQAY and YPY mutants have enhanced FcRn binding at both neutral and acidic pH (7+/6+). YTE mutant has enhanced FcRn binding at only acidic pH (7-/6+), and IHH mutant has no FcRn binding (7-/6-). The pharmacokinetics (PK) of these mutants in plasma, brain interstitial fluid (ISF), and brain homogenate were measured following intravenous administration. The area under the concentration-time curve (AUC) for all PK profiles and ratios of brain and plasma AUCs were calculated for comparison. Results showed that WT antibody had brain:plasma AUC ratio of 0.70% and ISF:plasma AUC ratio of 0.59%. Among all mutants, YPY exhibited the highest AUC ratio for brain (3.86%) and ISF (3.49%). YQAY had relatively high AUC ratios of 1.49% in the brain and 0.81% in ISF. YTE showed a similar AUC ratio in the brain (0.60%) and ISF (0.62%) compared to WT, while IHH exhibited similar AUC ratio in the brain (0.52%) but higher AUC ratio in ISF (2.48%). The results suggest that binding to FcRn at neutral and acidic pH facilitates transcytosis of antibody into the brain. Just increasing the binding to FcRn at acidic pH does not impact the disposition of antibody in the brain. Complete removal of FcRn binding might lead to prolonged retention of antibody in ISF. Together, these data demonstrate that FcRn significantly affects brain disposition of antibody, and engineering of Fc domain to alter the binding of antibody to FcRn may be exploited to achieve better exposure of antibodies in the brain.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.