peptidy: a light-weight Python library for peptide representation in machine learning.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf058
Rıza Özçelik, Laura van Weesep, Sarah de Ruiter, Francesca Grisoni
{"title":"peptidy: a light-weight Python library for peptide representation in machine learning.","authors":"Rıza Özçelik, Laura van Weesep, Sarah de Ruiter, Francesca Grisoni","doi":"10.1093/bioadv/vbaf058","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Peptides are widely used in applications ranging from drug discovery to food technologies. Machine learning has become increasingly prominent in accelerating the search for new peptides, and user-friendly computational tools can further enhance these efforts.</p><p><strong>Results: </strong>In this work, we introduce peptidy-a lightweight Python library that facilitates converting peptides (expressed as amino acid sequences) to numerical representations suited to machine learning. peptidy is free from external dependencies, integrates seamlessly into modern Python environments, and supports a range of encoding strategies suitable for both predictive and generative machine learning approaches. Additionally, peptidy supports peptides with post-translational modifications, such as phosphorylation, acetylation, and methylation, thereby extending the functionality of existing Python packages for peptides and proteins.</p><p><strong>Availability and implementation: </strong>peptidy is freely available with a permissive license on GitHub at the following URL: https://github.com/molML/peptidy.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf058"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Peptides are widely used in applications ranging from drug discovery to food technologies. Machine learning has become increasingly prominent in accelerating the search for new peptides, and user-friendly computational tools can further enhance these efforts.

Results: In this work, we introduce peptidy-a lightweight Python library that facilitates converting peptides (expressed as amino acid sequences) to numerical representations suited to machine learning. peptidy is free from external dependencies, integrates seamlessly into modern Python environments, and supports a range of encoding strategies suitable for both predictive and generative machine learning approaches. Additionally, peptidy supports peptides with post-translational modifications, such as phosphorylation, acetylation, and methylation, thereby extending the functionality of existing Python packages for peptides and proteins.

Availability and implementation: peptidy is freely available with a permissive license on GitHub at the following URL: https://github.com/molML/peptidy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
peptidy:用于机器学习中肽表示的轻量级Python库。
动机:肽被广泛应用于从药物发现到食品技术的各个领域。机器学习在加速寻找新肽方面的作用日益突出,而用户友好型计算工具可以进一步加强这些工作:在这项工作中,我们介绍了 peptidy--一个轻量级 Python 库,它有助于将多肽(以氨基酸序列表示)转换为适合机器学习的数字表示。peptidy 不依赖于外部环境,可无缝集成到现代 Python 环境中,并支持一系列适合预测式和生成式机器学习方法的编码策略。此外,peptidy 还支持磷酸化、乙酰化和甲基化等翻译后修饰的多肽,从而扩展了现有 Python 多肽和蛋白质软件包的功能。可用性和实现:peptidy 在 GitHub 上以许可的方式免费提供,网址如下:https://github.com/molML/peptidy。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Perspectives in computational mass spectrometry: recent developments and key challenges. AmpWrap: a one-line fully automated amplicon metabarcoding 16S and 18S rRNA gene analysis. Mapping educational needs in bioinformatics in Brazil: adapting ISCB 3.0 competencies to a regional context. Bridging worlds: connecting glycan representations with glycoinformatics via Universal Input and a canonicalized nomenclature. tskit_arg_visualizer: interactive plotting of ancestral recombination graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1