Chia-Yu Chang , Shih-Hsun Huang , Chong-Yan Chen , Cheng-Bang Jian , Ching-Chung Chang , Yu-Yao Chang , Mira Jung , Hsien-Ming Lee , Bill Cheng
{"title":"Monocyte-adhesive peptidyl liposomes for harnessing monocyte homing to tumor tissues","authors":"Chia-Yu Chang , Shih-Hsun Huang , Chong-Yan Chen , Cheng-Bang Jian , Ching-Chung Chang , Yu-Yao Chang , Mira Jung , Hsien-Ming Lee , Bill Cheng","doi":"10.1016/j.jconrel.2025.113672","DOIUrl":null,"url":null,"abstract":"<div><div>In current drug delivery strategies, the efficiency of most carriers still largely depends on their ability to passively infiltrate target tissues. To overcome this limitation, we developed monocyte-adhesive peptidyl liposomes, termed monocyte-mediated drug carriers (MMDCs). These carriers are designed to exploit the innate chemotactic properties of monocytes, which actively home to diseased tissues. MMDCs were shown to effectively hitchhike on circulating monocytes (THP-1 cells) under physiological flow conditions. Their targeting specificity was further demonstrated in a 3D microfluidic culture system consisting of human breast cancer spheroids (MDA-MB-231) embedded in a collagen matrix, overlaid with a human endothelial cell-derived barrier. MMDCs underwent trans-endothelial migration <em>via</em> monocyte hitchhiking and selectively recognized collagen matrices containing MDA-MB-231 cells, but not those embedded with non-cancerous cells. <em>In vitro</em> assays revealed that doxorubicin encapsulated in MMDCs was released into the extracellular environment following phagocytosis of the carriers by THP-1-derived macrophages. In a xenograft mouse model, MMDCs exhibited high tumor-targeting efficiency. By harnessing the homing capability of monocytes, MMDCs significantly improved drug biodistribution at the disease site, thereby enhancing the therapeutic efficacy of the encapsulated agents.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"382 ","pages":"Article 113672"},"PeriodicalIF":11.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925002925","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In current drug delivery strategies, the efficiency of most carriers still largely depends on their ability to passively infiltrate target tissues. To overcome this limitation, we developed monocyte-adhesive peptidyl liposomes, termed monocyte-mediated drug carriers (MMDCs). These carriers are designed to exploit the innate chemotactic properties of monocytes, which actively home to diseased tissues. MMDCs were shown to effectively hitchhike on circulating monocytes (THP-1 cells) under physiological flow conditions. Their targeting specificity was further demonstrated in a 3D microfluidic culture system consisting of human breast cancer spheroids (MDA-MB-231) embedded in a collagen matrix, overlaid with a human endothelial cell-derived barrier. MMDCs underwent trans-endothelial migration via monocyte hitchhiking and selectively recognized collagen matrices containing MDA-MB-231 cells, but not those embedded with non-cancerous cells. In vitro assays revealed that doxorubicin encapsulated in MMDCs was released into the extracellular environment following phagocytosis of the carriers by THP-1-derived macrophages. In a xenograft mouse model, MMDCs exhibited high tumor-targeting efficiency. By harnessing the homing capability of monocytes, MMDCs significantly improved drug biodistribution at the disease site, thereby enhancing the therapeutic efficacy of the encapsulated agents.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.