Pathway-Dependent Ion Effects for Electrocatalytic Olefin Epoxidation

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-04-03 DOI:10.1021/acssuschemeng.5c01296
Shuangshuang Cha, Yizhou Yang, Yujia Liu, Chenyang Zhao, Yupeng Tian, Wei Xu, Wei Du, Mengxin Qu, Hanlin Jin, Xuejing Yang, Bing Sun, Ming Gong
{"title":"Pathway-Dependent Ion Effects for Electrocatalytic Olefin Epoxidation","authors":"Shuangshuang Cha, Yizhou Yang, Yujia Liu, Chenyang Zhao, Yupeng Tian, Wei Xu, Wei Du, Mengxin Qu, Hanlin Jin, Xuejing Yang, Bing Sun, Ming Gong","doi":"10.1021/acssuschemeng.5c01296","DOIUrl":null,"url":null,"abstract":"Electrocatalytic oxidation is an emerging substitute for industrially relevant oxidation processes due to its mild conditions and high safety, and the catalytic performance is not only associated with the catalyst structure but also closely related to the interfacial ionic microenvironment. In this work, by using electrocatalytic olefin epoxidation as a representative example, we elucidated the different influencing mechanisms of the interfacial ionic environment toward two distinct mechanisms of indirect oxidation and direct oxidation through a combinatory study via kinetics, capacitance analysis, in situ spectroscopy, and theoretical calculation. In the indirect epoxidation system, the reaction pathway involves the hydrophilic activation of the mediator and its further reaction with olefin near the hydrophobic environment. The hydrophilicity/hydrophobicity characteristics of the anions tailor the interface for dispersing the solvent domains and active species, and the amphipathic sulfonimide anions create optimal performance. In the direct epoxidation system, the large olefin substrate must penetrate into the densely packed anion double layer to contact the surface oxygen species generated in situ on the electrode to be epoxidized, and the limiting factor turns into the crowdedness of the double layer or the anion size. The smaller tetrafluoroborate anions outperformed other larger anions by minimally impacting mass transfer. This work not only highlights the key role of the interfacial ionic environment in modulating organic electrosynthesis but also emphasizes the distinct influences of the microenvironment under different reaction pathways.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"38 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c01296","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic oxidation is an emerging substitute for industrially relevant oxidation processes due to its mild conditions and high safety, and the catalytic performance is not only associated with the catalyst structure but also closely related to the interfacial ionic microenvironment. In this work, by using electrocatalytic olefin epoxidation as a representative example, we elucidated the different influencing mechanisms of the interfacial ionic environment toward two distinct mechanisms of indirect oxidation and direct oxidation through a combinatory study via kinetics, capacitance analysis, in situ spectroscopy, and theoretical calculation. In the indirect epoxidation system, the reaction pathway involves the hydrophilic activation of the mediator and its further reaction with olefin near the hydrophobic environment. The hydrophilicity/hydrophobicity characteristics of the anions tailor the interface for dispersing the solvent domains and active species, and the amphipathic sulfonimide anions create optimal performance. In the direct epoxidation system, the large olefin substrate must penetrate into the densely packed anion double layer to contact the surface oxygen species generated in situ on the electrode to be epoxidized, and the limiting factor turns into the crowdedness of the double layer or the anion size. The smaller tetrafluoroborate anions outperformed other larger anions by minimally impacting mass transfer. This work not only highlights the key role of the interfacial ionic environment in modulating organic electrosynthesis but also emphasizes the distinct influences of the microenvironment under different reaction pathways.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化烯烃环氧化反应的途径依赖离子效应
电催化氧化因其条件温和、安全性高而成为工业相关氧化工艺的新兴替代品,其催化性能不仅与催化剂结构有关,还与界面离子微环境密切相关。本文以电催化烯烃环氧化反应为例,通过动力学、电容分析、原位光谱和理论计算相结合的研究,阐明了界面离子环境对间接氧化和直接氧化两种不同机理的不同影响机制。在间接环氧化体系中,反应途径包括介质的亲水性活化及其在疏水环境附近与烯烃的进一步反应。阴离子的亲疏水性特征为分散溶剂域和活性物质定制了界面,而两亲性磺酰亚胺阴离子创造了最佳性能。在直接环氧化体系中,大烯烃底物必须渗透到密实排列的阴离子双层中,才能与待环氧化电极上原位生成的表面氧接触,限制因素变为双层的拥挤性或阴离子的大小。较小的四氟硼酸盐阴离子通过最小影响传质而优于其他较大的阴离子。本研究不仅强调了界面离子环境在有机电合成调控中的关键作用,而且强调了微环境在不同反应途径下的不同影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Highly Stable Cellulose-Based HIPPE Pesticide Delivery System: High Control Efficiency and Low Environmental Risk Efficient Hydrogenation of CO2 to Higher Alcohols over Cu–Zn–Fe Catalysts: The Role of ZnFe2O4 Spinel Precursor Cellulose Acetate Based Optical Fibers Produced by Melt-Spinning Electrochemical Interlayer Expansion and Dual Redox Activation for Fast Mg-Ion Transport and High Capacity in Quasi-1D TiS3 Bombyx mori Pupae as a Novel Ingredient from an Underutilized Sericulture Product: A Dual Approach Based on Sustainable Extractions and Sample Pretreatment Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1