Nanobody Receptors Enable High-Sensitivity Monitoring of IL-6 Using Molecular Pendulum Bioanalysis

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-04-02 DOI:10.1021/acs.analchem.4c06305
Connor D. Flynn, Zhenwei Wu, Amy Bantle, Scott E. Isaacson, Dingran Chang, Alam Mahmud, Hanie Yousefi, Jagotamoy Das, Shana O. Kelley
{"title":"Nanobody Receptors Enable High-Sensitivity Monitoring of IL-6 Using Molecular Pendulum Bioanalysis","authors":"Connor D. Flynn, Zhenwei Wu, Amy Bantle, Scott E. Isaacson, Dingran Chang, Alam Mahmud, Hanie Yousefi, Jagotamoy Das, Shana O. Kelley","doi":"10.1021/acs.analchem.4c06305","DOIUrl":null,"url":null,"abstract":"The development of biomolecular sensing technologies with high sensitivity and specificity remains an important goal in modern analytical science. Molecular pendulum sensing has emerged as a new reagentless method capable of detecting a wide array of biomolecules directly in biological fluids. This sensing approach relies heavily on the modulation of hydrodynamic drag of molecular probes through solution, such that alterations in hydrodynamic diameter can transduce biomolecular interactions. Here, we explore the use of nanobodies as an alternative receptor in pendulum-based systems due to their small size and robust affinities. We compare the performance of nanobodies with that of aptamers and antibodies integrated into the molecular pendulum system by targeting the inflammatory indicator interleukin-6 (IL-6). Nanobody molecular pendulums demonstrate enhanced sensor response and sensitivity compared to those of the other receptors, enabling fine control over detection in the low physiological range of IL-6. In addition, we demonstrate the ability of nanobody sensors to function in complex biological matrices and at physiological temperature.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06305","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of biomolecular sensing technologies with high sensitivity and specificity remains an important goal in modern analytical science. Molecular pendulum sensing has emerged as a new reagentless method capable of detecting a wide array of biomolecules directly in biological fluids. This sensing approach relies heavily on the modulation of hydrodynamic drag of molecular probes through solution, such that alterations in hydrodynamic diameter can transduce biomolecular interactions. Here, we explore the use of nanobodies as an alternative receptor in pendulum-based systems due to their small size and robust affinities. We compare the performance of nanobodies with that of aptamers and antibodies integrated into the molecular pendulum system by targeting the inflammatory indicator interleukin-6 (IL-6). Nanobody molecular pendulums demonstrate enhanced sensor response and sensitivity compared to those of the other receptors, enabling fine control over detection in the low physiological range of IL-6. In addition, we demonstrate the ability of nanobody sensors to function in complex biological matrices and at physiological temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分子摆生物分析,纳米体受体可实现IL-6的高灵敏度监测
开发具有高灵敏度和特异性的生物分子传感技术仍然是现代分析科学的一个重要目标。分子摆动传感是一种新型的无试剂方法,能够直接检测生物液体中的各种生物分子。这种传感方法在很大程度上依赖于分子探针在溶液中的流体动力阻力的调节,因此流体动力直径的改变可以传递生物分子的相互作用。在这里,我们探讨了在基于摆锤的系统中使用纳米抗体作为替代受体的问题,因为纳米抗体体积小、亲和力强。我们以炎症指标白细胞介素-6(IL-6)为目标,比较了纳米抗体与整合到分子摆系统中的适配体和抗体的性能。与其他受体相比,纳米抗体分子钟摆的传感器响应和灵敏度都有所提高,能够在 IL-6 的低生理范围内实现精细的检测控制。此外,我们还展示了纳米抗体传感器在复杂的生物基质和生理温度下发挥作用的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
A Chemoenzymatic Method To Systematically Quantify Core Fucosylation Stoichiometry of Glycoproteins and Reveal Its Roles in EMT and Embryonic Development. Single Cell Quantification of Let-7a with an Electrophoresis-Assisted Tandem Signal Amplification Strategy based on Intracellular Catalytic Hairpin Assembly-Branched Hybridization Chain Reaction-MNAzyme. A Simple and Rapid Bst Polymerase-Catalyzed Isothermal Exponential Amplification Reaction for Multiplex Detection of MicroRNAs Recent Advances in Enzyme Activity Assay Methods: A Systematic Review of Emerging Technologies and Applications. Synergistic CRISPR/Cas12a-Nanozyme System for Iontronic Sensing of Site-Specific Septin9 Methylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1