Operando Characterization of Porous Nickel Foam Water Splitting Electrodes Using Near-Ambient Pressure X-ray Photoelectron Spectroscopy

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-04-03 DOI:10.1021/acs.jpclett.4c03362
Ramadan Chalil Oglou, Morten Linding Frederiksen, Zhaozong Sun, Marcel Ceccato, Andrey Shavorskiy, Jeppe Vang Lauritsen
{"title":"Operando Characterization of Porous Nickel Foam Water Splitting Electrodes Using Near-Ambient Pressure X-ray Photoelectron Spectroscopy","authors":"Ramadan Chalil Oglou, Morten Linding Frederiksen, Zhaozong Sun, Marcel Ceccato, Andrey Shavorskiy, Jeppe Vang Lauritsen","doi":"10.1021/acs.jpclett.4c03362","DOIUrl":null,"url":null,"abstract":"This study presents a practical approach for characterizing industrial water-splitting nickel foam electrodes under both cathodic and anodic conditions by employing synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The in situ studies reveal quantitatively reduced and oxidized Ni species on the electrode surface by recording the Ni 2p<sub>3/2</sub> signals after cycling the potential in cathodic and anodic regions, respectively. Operando studies demonstrate that a stable electrolyte film forms, allowing the probing of the solid/liquid interface under applied potentials. We attribute this stability to capillary forces within the porous structure of the foam, which enables the monitoring of surface deprotonation under anodic potentials and surface protonation under cathodic potentials. Given that the most common industrial alkaline water electrolyzer electrodes are based on nickel foams similar to the samples measured in this study, the demonstrated method offers a valuable approach for fundamental NAP-XPS examination directly on industrially employed electrodes.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"95 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03362","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a practical approach for characterizing industrial water-splitting nickel foam electrodes under both cathodic and anodic conditions by employing synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The in situ studies reveal quantitatively reduced and oxidized Ni species on the electrode surface by recording the Ni 2p3/2 signals after cycling the potential in cathodic and anodic regions, respectively. Operando studies demonstrate that a stable electrolyte film forms, allowing the probing of the solid/liquid interface under applied potentials. We attribute this stability to capillary forces within the porous structure of the foam, which enables the monitoring of surface deprotonation under anodic potentials and surface protonation under cathodic potentials. Given that the most common industrial alkaline water electrolyzer electrodes are based on nickel foams similar to the samples measured in this study, the demonstrated method offers a valuable approach for fundamental NAP-XPS examination directly on industrially employed electrodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用近环境压力x射线光电子能谱表征多孔泡沫镍水分解电极的操作性质
本研究提出了一种利用同步辐射近环境压力x射线光电子能谱(NAP-XPS)在阴极和阳极条件下表征工业水分解泡沫镍电极的实用方法。原位研究通过记录在阴极和阳极区域循环电位后的Ni 2p3/2信号,定量地揭示了电极表面还原和氧化的Ni物种。Operando研究表明,形成了稳定的电解质膜,允许在外加电位下探测固体/液体界面。我们将这种稳定性归因于泡沫多孔结构内的毛细力,这使得可以监测阳极电位下的表面去质子化和阴极电位下的表面质子化。考虑到最常见的工业碱性水电解槽电极是基于与本研究中测量的样品相似的镍泡沫,所演示的方法为直接在工业使用的电极上进行基础NAP-XPS检查提供了有价值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Water Adsorption at Pairs of Proximate Brønsted Acid Sites in Zeolites. Characterizing RNA Tetramer Conformational Landscape Using Explainable Machine Learning. Controllable Growth and Electrical Properties of Homogeneous Ternary InxGa1–xAs Nanowires Revealing Quantum Tunneling in a Nanocavity with Monolayer Graphene as a Stair Mapping Nonlinear Solvation at the Air-Organic-Solution Interface Using an Azide Probe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1