Controllable dispersion of nickel phthalocyanine molecules on graphene oxide for efficient electrocatalytic CO2 reduction†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-04-02 DOI:10.1039/D5TA01623A
Jiaxin He, Yu Han, Xiao Xu, Miao Sun, Longtian Kang, Wenlie Lin and Jingjing Liu
{"title":"Controllable dispersion of nickel phthalocyanine molecules on graphene oxide for efficient electrocatalytic CO2 reduction†","authors":"Jiaxin He, Yu Han, Xiao Xu, Miao Sun, Longtian Kang, Wenlie Lin and Jingjing Liu","doi":"10.1039/D5TA01623A","DOIUrl":null,"url":null,"abstract":"<p >Single-atom electrocatalysts with Ni–N<small><sub><em>x</em></sub></small>–C sites usually possess excellent activity for the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR). However, it still remains a challenge to synthesize them using unmodified nickel phthalocyanine (NiPc) with an intrinsic Ni–N<small><sub>4</sub></small>–C moiety at room temperature. Here, NiPc molecules are controllably dispersed on graphene oxide (GO) in the form of single molecules, dimers, or aggregates through a simple hydrolysis of protonated NiPc in a GO-containing aqueous phase. Systematic characterization shows the existence of π–π interaction, hydrogen bond and axial coordination between NiPc and GO in NiPc–GO composites. Electrochemical tests demonstrate that these NiPc–GO composites have high activity for electrocatalytic CO<small><sub>2</sub></small>RR to CO. After optimizing the GO content in NiPc–GO, a CO Faraday efficiency of &gt;90% is achieved over a work potential range of −0.8 to −1.1 <em>V</em><small><sub>RHE</sub></small>, reaching up to 98.6% at −0.9 <em>V</em><small><sub>RHE</sub></small>. Further experiments confirm that GO in NiPc–GO benefits CO<small><sub>2</sub></small> adsorption and formation of the *COOH intermediate. The change in the Ni<small><sup>2+</sup></small>/Ni<small><sup>3+</sup></small> ratio with the GO amount in NiPc–GO composites reveals that the Ni(<small>II</small>)/Ni(<small>III</small>)/GO heterojunction structure is the most conductive to the CO<small><sub>2</sub></small>RR process. This work provides an insight into the design and synthesis of single-atom Ni–N<small><sub>4</sub></small>–C electrocatalysts for the CO<small><sub>2</sub></small>RR.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 21","pages":" 15762-15772"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01623a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom electrocatalysts with Ni–Nx–C sites usually possess excellent activity for the CO2 reduction reaction (CO2RR). However, it still remains a challenge to synthesize them using unmodified nickel phthalocyanine (NiPc) with an intrinsic Ni–N4–C moiety at room temperature. Here, NiPc molecules are controllably dispersed on graphene oxide (GO) in the form of single molecules, dimers, or aggregates through a simple hydrolysis of protonated NiPc in a GO-containing aqueous phase. Systematic characterization shows the existence of π–π interaction, hydrogen bond and axial coordination between NiPc and GO in NiPc–GO composites. Electrochemical tests demonstrate that these NiPc–GO composites have high activity for electrocatalytic CO2RR to CO. After optimizing the GO content in NiPc–GO, a CO Faraday efficiency of >90% is achieved over a work potential range of −0.8 to −1.1 VRHE, reaching up to 98.6% at −0.9 VRHE. Further experiments confirm that GO in NiPc–GO benefits CO2 adsorption and formation of the *COOH intermediate. The change in the Ni2+/Ni3+ ratio with the GO amount in NiPc–GO composites reveals that the Ni(II)/Ni(III)/GO heterojunction structure is the most conductive to the CO2RR process. This work provides an insight into the design and synthesis of single-atom Ni–N4–C electrocatalysts for the CO2RR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酞菁镍分子在氧化石墨烯上的可控分散及高效电催化CO2还原
具有Ni-Nx-C位的单原子电催化剂通常具有优异的CO2还原反应(CO2RR)活性。然而,在室温条件下,用未改性的具有Ni-N4-C部分的酞菁镍(NiPc)合成它们仍然是一个挑战。在这里,NiPc分子以单分子、二聚体或聚集体的形式可控地分散在氧化石墨烯(GO)上,通过在含GO的水相中对质子化NiPc进行简单的水解。系统表征表明NiPc-GO复合材料中存在π-π相互作用、氢键和轴向配位。电化学测试结果表明,复合材料对CO具有较高的电催化活性。优化nic -GO中GO的含量后,CO的法拉第效率提高;在−0.8 ~−1.1 VRHE的工作电位范围内,可达95%,在−0.9 VRHE的工作电位范围内可达98.6%。进一步的实验证实,nic -GO中的GO有利于CO2吸附和*COOH中间体的形成。Ni2+/Ni3+比值随GO用量的变化表明,Ni(Ⅱ)/Ni(Ⅲ)/GO异质结结构对CO2RR过程的导电性最强。这项工作为CO2RR单原子Ni-N4-C电催化剂的设计和合成提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
In-situ preparation of pseudo-graphite domains in hard carbon via molecular engineering towards high-performance Na-ion batteries † Inside back cover Investigating the shunt resistance of semitransparent organic solar cells via simulating their practical photovoltaic performances Conductive natural fibers as dual-functional conductive agents: high conductivity and stress relief in silicon-based anodes The cross-boundary catalytic effect of anions and cations enhances the hydrogen storage performance of magnesium-based hydrogen storage materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1