A linear programming-based hyper local search for tuning hyperparameters

IF 0.9 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Letters Pub Date : 2025-04-02 DOI:10.1016/j.orl.2025.107287
Ankur Sinha , Satender Gunwal
{"title":"A linear programming-based hyper local search for tuning hyperparameters","authors":"Ankur Sinha ,&nbsp;Satender Gunwal","doi":"10.1016/j.orl.2025.107287","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a linear programming-based approach for hyperparameter tuning of machine learning models. The approach finetunes continuous hyperparameters and model parameters through a linear program, enhancing model generalization in the vicinity of an initial model. The proposed method converts hyperparameter optimization into a bilevel program and identifies a descent direction to improve validation loss. The results demonstrate improvements in most cases across regression, machine learning, and deep learning tasks, with test performance enhancements ranging from 0.3% to 28.1%.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"61 ","pages":"Article 107287"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637725000483","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a linear programming-based approach for hyperparameter tuning of machine learning models. The approach finetunes continuous hyperparameters and model parameters through a linear program, enhancing model generalization in the vicinity of an initial model. The proposed method converts hyperparameter optimization into a bilevel program and identifies a descent direction to improve validation loss. The results demonstrate improvements in most cases across regression, machine learning, and deep learning tasks, with test performance enhancements ranging from 0.3% to 28.1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性规划的超局部寻优超参数
我们介绍了一种基于线性规划的机器学习模型超参数整定方法。该方法通过线性规划对连续超参数和模型参数进行微调,增强了模型在初始模型附近的泛化能力。该方法将超参数优化转换为双层规划,并确定下降方向,以减少验证损失。结果表明,在回归、机器学习和深度学习任务的大多数情况下,测试性能的提高幅度从0.3%到28.1%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
期刊最新文献
A non-monotone line-search method for minimizing functions with spurious local minima Squared deviations games: A subclass of market games and their Shapley value A feasible method for constrained derivative-free optimization Geoffrion’s theorem beyond finiteness and rationality Double traversals in optimal picker routes for warehouses with multiple blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1