Corrosion behavior and mechanical properties of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 interlayer under high-temperature steam environments at 1200 °C

IF 3.2 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2025-03-30 DOI:10.1016/j.jnucmat.2025.155798
Shaobo Yang , Chenxi Liang , Jiali Li , Yujie Ma , Sijie Kou , Juanli Deng , Bo Chen , Shangwu Fan
{"title":"Corrosion behavior and mechanical properties of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 interlayer under high-temperature steam environments at 1200 °C","authors":"Shaobo Yang ,&nbsp;Chenxi Liang ,&nbsp;Jiali Li ,&nbsp;Yujie Ma ,&nbsp;Sijie Kou ,&nbsp;Juanli Deng ,&nbsp;Bo Chen ,&nbsp;Shangwu Fan","doi":"10.1016/j.jnucmat.2025.155798","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigated the corrosion behavior and mechanical performance of SiC/SiC composite joints with Y<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (YAS) interlayers under high-temperature steam environments at 1200 °C. Under low-flow conditions, partial disruption of Si-O and Al-O bonds in the YAS glass network reduced crosslinking, forming an aluminosilicate protective layer that inhibited further corrosion. Prolonged exposure led to Y<sup>3+</sup> migration and accumulation, resulting in Y<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> precipitation and growth. High-flow conditions caused a thinner glass layer, continuous longitudinal cracks, and more severe erosion and dissolution of the YAS glass due to higher steam velocity. Despite these degradations, the joints exhibited satisfactory performance, maintaining shear strengths of about 40 ± 2 MPa after 15 h of low-flow exposure and about 36 ± 5 MPa after 5 h of high-flow exposure. These findings demonstrate that YAS interlayers provide excellent corrosion resistance and mechanical stability as a sealant for nuclear-grade SiC/SiC.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"610 ","pages":"Article 155798"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152500193X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigated the corrosion behavior and mechanical performance of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 (YAS) interlayers under high-temperature steam environments at 1200 °C. Under low-flow conditions, partial disruption of Si-O and Al-O bonds in the YAS glass network reduced crosslinking, forming an aluminosilicate protective layer that inhibited further corrosion. Prolonged exposure led to Y3+ migration and accumulation, resulting in Y2Si2O7 precipitation and growth. High-flow conditions caused a thinner glass layer, continuous longitudinal cracks, and more severe erosion and dissolution of the YAS glass due to higher steam velocity. Despite these degradations, the joints exhibited satisfactory performance, maintaining shear strengths of about 40 ± 2 MPa after 15 h of low-flow exposure and about 36 ± 5 MPa after 5 h of high-flow exposure. These findings demonstrate that YAS interlayers provide excellent corrosion resistance and mechanical stability as a sealant for nuclear-grade SiC/SiC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含Y2O3-Al2O3-SiO2中间层SiC/SiC复合材料接头在1200℃高温蒸汽环境下的腐蚀行为和力学性能
研究了Y2O3-Al2O3-SiO2 (YAS)夹层SiC/SiC复合材料接头在1200℃高温蒸汽环境下的腐蚀行为和力学性能。在低流量条件下,YAS玻璃网络中Si-O和Al-O键的部分断裂减少了交联,形成了铝硅酸盐保护层,抑制了进一步的腐蚀。长时间暴露导致Y3+迁移积累,导致Y2Si2O7析出生长。高流量条件下,由于蒸汽流速的增大,使得YAS玻璃的玻璃层变薄,纵向裂纹不断,侵蚀和溶解更加严重。尽管存在这些退化,但节理表现出令人满意的性能,在低流量暴露15小时后保持约40±2 MPa的抗剪强度,在高流量暴露5小时后保持约36±5 MPa的抗剪强度。这些发现表明,作为核级SiC/SiC的密封胶,YAS夹层具有优异的耐腐蚀性和机械稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Al2O3
麦克林
SiO2
麦克林
Al2O3
麦克林
SiO2
阿拉丁
Y2O3
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Effect and mechanism of Fe³⁺ impurities on the corrosion behavior of SiC-B₄C composites in molten FLiNaK salt Investigations of size effect and normalization models for tensile deformation of A508-III steel miniature specimens Corrigendum to “Post-irradiation examination of AGR-3/4 TRISO fuel compacts using three-dimensional X-ray computed tomography” [Journal of Nuclear Materials Volume 620 (2026) 156341] Sustainable granite encapsulation of volatile nuclear wastes: A flux-mediated low-temperature strategy Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1