DFT – Proposed mechanism of Friedel–Crafts acylation of indole using metal triflate catalysts

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL Computational and Theoretical Chemistry Pub Date : 2025-03-26 DOI:10.1016/j.comptc.2025.115201
Kieu Van T. Nguyen , Khung M. Trang , Tam T.-V. Mai , Quan Phung , Phuong Hoang Tran , Yoshiyuki Kawazoe , Nguyen Nguyen T. Pham
{"title":"DFT – Proposed mechanism of Friedel–Crafts acylation of indole using metal triflate catalysts","authors":"Kieu Van T. Nguyen ,&nbsp;Khung M. Trang ,&nbsp;Tam T.-V. Mai ,&nbsp;Quan Phung ,&nbsp;Phuong Hoang Tran ,&nbsp;Yoshiyuki Kawazoe ,&nbsp;Nguyen Nguyen T. Pham","doi":"10.1016/j.comptc.2025.115201","DOIUrl":null,"url":null,"abstract":"<div><div>The Friedel-Crafts acylation of indole with propionic anhydride using a metal-triflate catalyst is an efficient and environmentally friendly method for synthesizing 3-acylindole, an important pharmaceutical intermediate. Despite its high selectivity for the C-3 position without requiring NH protection, the exact mechanism by which the metal-triflate catalyst promotes regioselective acylation remains unclear. In this study, density functional theory (DFT) calculations were employed to explore acyl substitution at three positions on the indole ring, both in the presence and absence of the catalyst. Two possible mechanisms were proposed: (<em>i</em>) an indirect pathway, where the catalyst forms an electrophilic intermediate (PrOTf) to acylate indole, and (<em>ii</em>) a direct pathway, where indole reacts directly with propionic anhydride at the metal core. The results indicated that the indirect pathway favored N-acylation, while the direct pathway preferred 3-acylindole. Both pathways were observed across several metal triflate catalysts (M = Y, In, Bi, La), in line with experimental data.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1248 ","pages":"Article 115201"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25001379","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Friedel-Crafts acylation of indole with propionic anhydride using a metal-triflate catalyst is an efficient and environmentally friendly method for synthesizing 3-acylindole, an important pharmaceutical intermediate. Despite its high selectivity for the C-3 position without requiring NH protection, the exact mechanism by which the metal-triflate catalyst promotes regioselective acylation remains unclear. In this study, density functional theory (DFT) calculations were employed to explore acyl substitution at three positions on the indole ring, both in the presence and absence of the catalyst. Two possible mechanisms were proposed: (i) an indirect pathway, where the catalyst forms an electrophilic intermediate (PrOTf) to acylate indole, and (ii) a direct pathway, where indole reacts directly with propionic anhydride at the metal core. The results indicated that the indirect pathway favored N-acylation, while the direct pathway preferred 3-acylindole. Both pathways were observed across several metal triflate catalysts (M = Y, In, Bi, La), in line with experimental data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用金属三氟酸盐催化剂催化吲哚的Friedel-Crafts酰化反应机理
三氟化金属催化吲哚与丙酸酐的Friedel-Crafts酰化反应是合成重要的医药中间体3-酰基吲哚的一种高效、环保的方法。尽管在不需要NH保护的情况下对C-3位置具有高选择性,但三氟酸金属催化剂促进区域选择性酰化的确切机制尚不清楚。在本研究中,采用密度泛函理论(DFT)计算了在催化剂存在和不存在的情况下,吲哚环上三个位置的酰基取代。提出了两种可能的机制:(i)间接途径,催化剂形成亲电中间体(PrOTf)以酰基化吲哚;(ii)直接途径,吲哚直接与金属核处的丙酸酐反应。结果表明,间接途径倾向于n -酰化,而直接途径倾向于3-酰基。在几种金属三酸盐催化剂(M = Y, In, Bi, La)上观察到这两种途径,与实验数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
期刊最新文献
The reactive fingerprint of toxic alkylphenols: Insights from NO+ chemical ionization and spectroscopy Size-dependent evolution in the geometry and electronic properties of Cs3Aln−/0 (n = 3–14) clusters A DFT study on the antioxidant mechanism of hibiscetin against the scavenging of hydroxyl and hydroperoxyl radicals Structural evolution and thermodynamic tuning of Sr₁₋ₓBaₓLiH₃: Inverse perovskites for high-volumetric-capacity hydrogen storage Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1