Fine-Tuning of Forest Height Retrieval in PolInSAR Using Population-Based Optimization

Seung-Jae Lee;Sun-Gu Lee
{"title":"Fine-Tuning of Forest Height Retrieval in PolInSAR Using Population-Based Optimization","authors":"Seung-Jae Lee;Sun-Gu Lee","doi":"10.1109/LGRS.2025.3552055","DOIUrl":null,"url":null,"abstract":"In this study, we utilize the population-based optimization (PBO) techniques to accurately retrieve the forest height (FH) in polarimetric synthetic aperture radar interferometry (PolInSAR) inversion. After the initial FH information is obtained using conventional PolInSAR inversion methods, it is adjusted using the PBO techniques and two physical models, which are the random-volume-over ground (RVoG) and the simplified version of random-motion-over-ground (RMoG) models. The concept of fine-tuning was applied to both single-baseline (SB) and multibaseline (MB) PolInSAR data. In the results obtained using both the simulated and real data, the proposed fine-tuning approach exhibits significantly improved FH estimation results, as compared with the conventional inversions.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930519/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we utilize the population-based optimization (PBO) techniques to accurately retrieve the forest height (FH) in polarimetric synthetic aperture radar interferometry (PolInSAR) inversion. After the initial FH information is obtained using conventional PolInSAR inversion methods, it is adjusted using the PBO techniques and two physical models, which are the random-volume-over ground (RVoG) and the simplified version of random-motion-over-ground (RMoG) models. The concept of fine-tuning was applied to both single-baseline (SB) and multibaseline (MB) PolInSAR data. In the results obtained using both the simulated and real data, the proposed fine-tuning approach exhibits significantly improved FH estimation results, as compared with the conventional inversions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于种群优化的PolInSAR森林高度检索微调
在极化合成孔径雷达干涉(PolInSAR)反演中,利用基于种群的优化(PBO)技术精确反演森林高度(FH)。在使用常规PolInSAR反演方法获得初始跳高信息后,使用PBO技术和两种物理模型进行调整,即随机体积-地面(RVoG)模型和简化版随机运动-地面(RMoG)模型。将微调的概念应用于单基线(SB)和多基线(MB) PolInSAR数据。在模拟数据和真实数据的对比结果中,与传统的反演方法相比,所提出的微调方法的跳频估计结果有了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1