Frequency-Enhanced Mamba for Remote Sensing Change Detection

Yan Xing;Yunan Jia;Sen Gao;Jiali Hu;Rui Huang
{"title":"Frequency-Enhanced Mamba for Remote Sensing Change Detection","authors":"Yan Xing;Yunan Jia;Sen Gao;Jiali Hu;Rui Huang","doi":"10.1109/LGRS.2025.3551754","DOIUrl":null,"url":null,"abstract":"Remote sensing (RS) change detection (CD) is a critical task in monitoring surface dynamics. Recently, Mamba-based methods have shown promising performance and are quickly adopted in change detection. However, when addressing the task of CD in complex scenarios, existing methods have limitations in capturing features of minor and texture changes due to the lack of frequency information. To address these challenges, we propose a frequency-enhanced Mamba for RSCD (FEMCD). First, we design a difference-guided state-space model (DGSSM) to extract change-related features. DGSSM takes the features of bitemporal images as input and uses absolute-difference features to guide the network to focus on change regions. Second, we develop a DCT-aided Mamba decoder (DCTMD) for feature decoding and refinement. DCTMD uses the omnidirectional selective scan module (OSSM) to refine the change-related features and DCT to capture minor change details. Finally, we use a simple classifier to generate the final change map. We have conducted extensive experiments on five RSCD datasets, comparing FEMCD with 11 SOTA change detectors. The experimental results show that our proposed FEMCD method outperforms other compared methods. The code can be found at: <uri>https://github.com/JYN712/FEMCD</uri>.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10928990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing (RS) change detection (CD) is a critical task in monitoring surface dynamics. Recently, Mamba-based methods have shown promising performance and are quickly adopted in change detection. However, when addressing the task of CD in complex scenarios, existing methods have limitations in capturing features of minor and texture changes due to the lack of frequency information. To address these challenges, we propose a frequency-enhanced Mamba for RSCD (FEMCD). First, we design a difference-guided state-space model (DGSSM) to extract change-related features. DGSSM takes the features of bitemporal images as input and uses absolute-difference features to guide the network to focus on change regions. Second, we develop a DCT-aided Mamba decoder (DCTMD) for feature decoding and refinement. DCTMD uses the omnidirectional selective scan module (OSSM) to refine the change-related features and DCT to capture minor change details. Finally, we use a simple classifier to generate the final change map. We have conducted extensive experiments on five RSCD datasets, comparing FEMCD with 11 SOTA change detectors. The experimental results show that our proposed FEMCD method outperforms other compared methods. The code can be found at: https://github.com/JYN712/FEMCD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于遥感变化检测的频率增强曼巴
遥感变化检测是地表动态监测的一项重要任务。近年来,基于mamba的方法已显示出良好的性能,并迅速应用于变化检测。然而,在处理复杂场景下的CD任务时,由于缺乏频率信息,现有方法在捕捉细微变化和纹理变化特征方面存在局限性。为了解决这些挑战,我们提出了一种用于RSCD (FEMCD)的频率增强曼巴。首先,我们设计了一个差分引导的状态空间模型(DGSSM)来提取变化相关的特征。DGSSM以双时图像的特征作为输入,利用绝对差分特征引导网络聚焦于变化区域。其次,我们开发了一个dct辅助曼巴解码器(DCTMD),用于特征解码和细化。DCTMD使用全向选择性扫描模块(OSSM)来细化与变化相关的特征,DCT来捕获微小的变化细节。最后,我们使用一个简单的分类器来生成最终的变更映射。我们在五个RSCD数据集上进行了广泛的实验,将FEMCD与11个SOTA变化检测器进行了比较。实验结果表明,本文提出的FEMCD方法优于其他比较方法。代码可以在https://github.com/JYN712/FEMCD上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1