Mercerized Microcrystalline Cellulose: A Game-Changer for Sustainable Chromium Removal from Tannery Effluents

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2025-04-04 DOI:10.1007/s11270-025-07929-9
Alex Rodrigues Gomes, Letícia Paiva de Matos, Abner Marcelino Silva, Abraão Tiago Batista Guimarães, Thiarlen Marinho da Luz, Rafaela Ribeiro de Brito, Aline Sueli de Lima Rodrigues, Juraci Alves de Oliveira, Mônica Cristina Teixeira, Ivandilson Pessoa Pinto de Menezes, Chinnasamy Ragavendran, Marimuthu Govindarajan, Guilherme Malafaia
{"title":"Mercerized Microcrystalline Cellulose: A Game-Changer for Sustainable Chromium Removal from Tannery Effluents","authors":"Alex Rodrigues Gomes,&nbsp;Letícia Paiva de Matos,&nbsp;Abner Marcelino Silva,&nbsp;Abraão Tiago Batista Guimarães,&nbsp;Thiarlen Marinho da Luz,&nbsp;Rafaela Ribeiro de Brito,&nbsp;Aline Sueli de Lima Rodrigues,&nbsp;Juraci Alves de Oliveira,&nbsp;Mônica Cristina Teixeira,&nbsp;Ivandilson Pessoa Pinto de Menezes,&nbsp;Chinnasamy Ragavendran,&nbsp;Marimuthu Govindarajan,&nbsp;Guilherme Malafaia","doi":"10.1007/s11270-025-07929-9","DOIUrl":null,"url":null,"abstract":"<div><p>The leather tanning industry generates significant environmental impacts due to the release of effluents containing high concentrations of heavy metals, particularly chromium (Cr). This study investigates the efficacy of mercerized microcrystalline cellulose particles (MCPs) as a sustainable adsorbent for Cr removal from tannery effluents. MCPs were synthesized and characterized using Raman spectroscopy and scanning electron microscopy (SEM) to assess their structural modifications post-mercerization. Adsorption assays were conducted under various experimental conditions, including agitation rate, pH, temperature, effluent concentration, and MCP concentration. The adsorption capacity was modeled using Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms, with Langmuir providing a better fit (R<sup>2</sup> = 0.9884), indicating indicating a monolayer adsorption of Cr ions onto the MCPs surface. Results showed a maximum adsorption capacity of 28.17 mg/g for Cr, with optimal conditions identified as 400 rpm agitation, pH 5.0, 35 °C temperature, and 25 mg/L MCP concentration. Multiple regression analysis highlighted pH and effluent dilution as significant factors affecting adsorption efficiency. Additionally, cluster analysis and Detrended Correspondence Analysis (DCA) confirmed the complex interactions among the variables. Our findings suggest that mercerized MCPs are a promising and sustainable solution for Cr removal from tannery effluents, offering a high adsorption capacity and potential for environmental application. Future research should focus on the regeneration and reuse of MCPs, assessing other pollutants, and the economic feasibility of large-scale implementation.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07929-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The leather tanning industry generates significant environmental impacts due to the release of effluents containing high concentrations of heavy metals, particularly chromium (Cr). This study investigates the efficacy of mercerized microcrystalline cellulose particles (MCPs) as a sustainable adsorbent for Cr removal from tannery effluents. MCPs were synthesized and characterized using Raman spectroscopy and scanning electron microscopy (SEM) to assess their structural modifications post-mercerization. Adsorption assays were conducted under various experimental conditions, including agitation rate, pH, temperature, effluent concentration, and MCP concentration. The adsorption capacity was modeled using Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms, with Langmuir providing a better fit (R2 = 0.9884), indicating indicating a monolayer adsorption of Cr ions onto the MCPs surface. Results showed a maximum adsorption capacity of 28.17 mg/g for Cr, with optimal conditions identified as 400 rpm agitation, pH 5.0, 35 °C temperature, and 25 mg/L MCP concentration. Multiple regression analysis highlighted pH and effluent dilution as significant factors affecting adsorption efficiency. Additionally, cluster analysis and Detrended Correspondence Analysis (DCA) confirmed the complex interactions among the variables. Our findings suggest that mercerized MCPs are a promising and sustainable solution for Cr removal from tannery effluents, offering a high adsorption capacity and potential for environmental application. Future research should focus on the regeneration and reuse of MCPs, assessing other pollutants, and the economic feasibility of large-scale implementation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丝光微晶纤维素:从制革厂废水中可持续去除铬的游戏规则改变者
制革工业由于排放含有高浓度重金属,特别是铬的废水,对环境产生重大影响。本研究考察了丝光微晶纤维素颗粒(MCPs)作为一种可持续吸附剂去除制革废水中的铬的效果。合成了MCPs,并利用拉曼光谱和扫描电镜对其进行了表征,以评估其丝光后的结构变化。吸附实验在不同的实验条件下进行,包括搅拌速率、pH、温度、出水浓度和MCP浓度。吸附量采用Langmuir、Freundlich、Dubinin-Radushkevich和Temkin等温线进行建模,其中Langmuir的拟合效果较好(R2 = 0.9884),表明MCPs表面存在Cr离子的单层吸附。结果表明,在搅拌400 rpm、pH 5.0、温度35℃、MCP浓度25 mg/L条件下,MCP对Cr的最大吸附量为28.17 mg/g。多元回归分析表明pH和出水稀释度是影响吸附效率的重要因素。此外,聚类分析和去趋势对应分析(DCA)证实了变量之间复杂的相互作用。我们的研究结果表明,丝光MCPs具有很高的吸附能力和潜在的环境应用潜力,是一种有前途的、可持续的去除制革废水中铬的解决方案。未来的研究应侧重于mcp的再生和再利用,评估其他污染物,以及大规模实施的经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
From Agricultural Waste to Safer Vegetables: A Critical Review of Biochar for Remediating Heavy Metals in Vegetable-Growing Soils and Plant Uptake Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in River Sediments Throughout Croatia: Spatial Distribution and In Silico Toxicity Characterization Performance of Wetland in Pollutant Removal: a Review Porous PANI-Fe2O3 Nanocomposite for the Adsorptive Removal of Methyl Orange and Cr(VI) from Aqueous Media: A Step towards Sustainable Development Integrated Assessment of Groundwater Quality and Recharge Potential for Sustainable Water Resource Management using Hydrogeochemical Analysis, GIS And AHP Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1