Avery Zheng, Nour Awad, Denzel Ryan D Cruz, Ruchika Pissay, Charles Farbos de Luzan, Gregory Dion, Yoonjee Park
{"title":"Controlled-Release of Dexamethasone via Light-Activated Implant for Potential Vocal Fold Scar Treatment.","authors":"Avery Zheng, Nour Awad, Denzel Ryan D Cruz, Ruchika Pissay, Charles Farbos de Luzan, Gregory Dion, Yoonjee Park","doi":"10.1021/acsbiomaterials.4c02231","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates a novel light-activated implant system designed for injectable, dose-controlled, sustained drug delivery. The light-activated implant was developed by incorporating light-activated drug-releasing liposomes into a biodegradable polymeric capsule. The drug release kinetics from the implant at 0, 1, and 2 min of light activation were determined <i>in vitro</i> using a tissue mimic with varying depths. A pulsed near-infrared laser at 1064 nm, connected to an optical fiber, was used as the light source. The dexamethasone sodium phosphate (DSP) release was tunable depending on the laser irradiation time, with an approximately 4% reduction in release as tissue depth increased by 2 mm. The implant was injected using a needle into <i>ex vivo</i> porcine vocal folds, and drug release kinetics were quantified by real-time fluorescence imaging. Mathematical models were also developed to understand diffusion mechanisms of the light-activated, controlled drug release profiles from the cylindrical implant. Finally, <i>in vivo</i> evaluations in a healthy rabbit vocal fold model confirmed comparable drug release through light activation. Histological assessments demonstrated the safety of the drug delivery system and the structural integrity of the implant within biological tissues after 6 weeks of implantation. These results support the potential clinical application of the drug delivery system, offering a promising solution for conditions requiring precise, controlled therapeutic delivery. Future work will focus on scaling the technology for clinical trials, including construct and tissue reactions in human tissue, to enhance treatment efficacy for various medical conditions.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"2180-2191"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02231","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates a novel light-activated implant system designed for injectable, dose-controlled, sustained drug delivery. The light-activated implant was developed by incorporating light-activated drug-releasing liposomes into a biodegradable polymeric capsule. The drug release kinetics from the implant at 0, 1, and 2 min of light activation were determined in vitro using a tissue mimic with varying depths. A pulsed near-infrared laser at 1064 nm, connected to an optical fiber, was used as the light source. The dexamethasone sodium phosphate (DSP) release was tunable depending on the laser irradiation time, with an approximately 4% reduction in release as tissue depth increased by 2 mm. The implant was injected using a needle into ex vivo porcine vocal folds, and drug release kinetics were quantified by real-time fluorescence imaging. Mathematical models were also developed to understand diffusion mechanisms of the light-activated, controlled drug release profiles from the cylindrical implant. Finally, in vivo evaluations in a healthy rabbit vocal fold model confirmed comparable drug release through light activation. Histological assessments demonstrated the safety of the drug delivery system and the structural integrity of the implant within biological tissues after 6 weeks of implantation. These results support the potential clinical application of the drug delivery system, offering a promising solution for conditions requiring precise, controlled therapeutic delivery. Future work will focus on scaling the technology for clinical trials, including construct and tissue reactions in human tissue, to enhance treatment efficacy for various medical conditions.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture