Predictive Value of Social Determinants of Health on 90-Day Readmission and Health Utilization Following ACDF: A Comparative Analysis of XGBoost, Random Forest, Elastic-Net, SVR, and Deep Learning.

IF 3 3区 医学 Q2 CLINICAL NEUROLOGY Global Spine Journal Pub Date : 2025-11-01 Epub Date: 2025-04-02 DOI:10.1177/21925682251332556
Samuel G Reyes, Pranav M Bajaj, Daniel E Herrera, Steven S Kurapaty, Austin Chen, Rushmin Khazanchi, Anitesh Bajaj, Wellington K Hsu, Alpesh A Patel, Srikanth N Divi
{"title":"Predictive Value of Social Determinants of Health on 90-Day Readmission and Health Utilization Following ACDF: A Comparative Analysis of XGBoost, Random Forest, Elastic-Net, SVR, and Deep Learning.","authors":"Samuel G Reyes, Pranav M Bajaj, Daniel E Herrera, Steven S Kurapaty, Austin Chen, Rushmin Khazanchi, Anitesh Bajaj, Wellington K Hsu, Alpesh A Patel, Srikanth N Divi","doi":"10.1177/21925682251332556","DOIUrl":null,"url":null,"abstract":"<p><p>Study DesignRetrospective cohort.ObjectiveDespite numerous studies highlighting patient comorbidities and surgical factors in postoperative success, the role of social determinants of health (SDH) in anterior cervical discectomy and fusion (ACDF) outcomes remains unexplored. This study evaluates the predictive impact of SDH on 90-day readmission and health utilization (HU) in ACDF patients using machine learning (ML).MethodsWe analyzed 3127 ACDF patients (2003-2023) from a multisite academic center, incorporating over 35 clinical and demographic variables. SDH characteristics were assessed using the Social Vulnerability Index. Primary outcomes included 90-day readmission and postoperative HU. ML models were developed and validated by the area under the curve (AUC) for readmission and mean absolute error (MAE) for HU. Feature importance analysis identified key predictors.ResultsBalanced Random Forest (AUC = 0.75) best predicted 90-day readmission, with length of stay, Elixhauser score, and Medicare status as top predictors. Among SDH factors, minority status & language, household composition & disability, socioeconomic status, and housing type & transportation were influential. Support Vector Regression (MAE = 1.96) best predicted HU, with perioperative duration, socioeconomic status, and minority status & language as key predictors.ConclusionsFindings highlight SDH's role in ACDF outcomes, suggesting the value of stratifying for interventions such as targeted resource allocation, language-concordant care, and tailored follow-up. While reliance on a single healthcare system and proxy SDH measures are limitations, this is the first study to apply ML to assess SDH in ACDF patients. Further validation with direct patient-reported SDH data is needed to refine predictive models.</p>","PeriodicalId":12680,"journal":{"name":"Global Spine Journal","volume":" ","pages":"3797-3806"},"PeriodicalIF":3.0000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682251332556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Study DesignRetrospective cohort.ObjectiveDespite numerous studies highlighting patient comorbidities and surgical factors in postoperative success, the role of social determinants of health (SDH) in anterior cervical discectomy and fusion (ACDF) outcomes remains unexplored. This study evaluates the predictive impact of SDH on 90-day readmission and health utilization (HU) in ACDF patients using machine learning (ML).MethodsWe analyzed 3127 ACDF patients (2003-2023) from a multisite academic center, incorporating over 35 clinical and demographic variables. SDH characteristics were assessed using the Social Vulnerability Index. Primary outcomes included 90-day readmission and postoperative HU. ML models were developed and validated by the area under the curve (AUC) for readmission and mean absolute error (MAE) for HU. Feature importance analysis identified key predictors.ResultsBalanced Random Forest (AUC = 0.75) best predicted 90-day readmission, with length of stay, Elixhauser score, and Medicare status as top predictors. Among SDH factors, minority status & language, household composition & disability, socioeconomic status, and housing type & transportation were influential. Support Vector Regression (MAE = 1.96) best predicted HU, with perioperative duration, socioeconomic status, and minority status & language as key predictors.ConclusionsFindings highlight SDH's role in ACDF outcomes, suggesting the value of stratifying for interventions such as targeted resource allocation, language-concordant care, and tailored follow-up. While reliance on a single healthcare system and proxy SDH measures are limitations, this is the first study to apply ML to assess SDH in ACDF patients. Further validation with direct patient-reported SDH data is needed to refine predictive models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACDF后90天再入院和健康利用的健康社会决定因素的预测价值:XGBoost、随机森林、弹性网络、SVR和深度学习的比较分析
研究设计回顾性队列.目的尽管有许多研究强调了患者的合并症和手术因素对术后成功的影响,但健康的社会决定因素(SDH)在颈椎前路椎间盘切除和融合术(ACDF)结果中的作用仍未得到探讨。本研究使用机器学习(ML)评估了 SDH 对 ACDF 患者 90 天再入院和健康利用率(HU)的预测影响。方法我们分析了一个多地点学术中心的 3127 名 ACDF 患者(2003-2023 年),其中包含超过 35 个临床和人口统计学变量。SDH特征使用社会脆弱性指数进行评估。主要结果包括 90 天再入院和术后 HU。建立了ML模型,并通过再入院率的曲线下面积(AUC)和HU的平均绝对误差(MAE)进行了验证。结果平衡随机森林(AUC = 0.75)对 90 天再入院的预测效果最好,住院时间、Elixhauser 评分和医疗保险状况是预测效果最好的因素。在 SDH 因素中,少数民族身份和语言、家庭组成和残疾、社会经济地位以及住房类型和交通都有影响。支持向量回归(MAE = 1.96)对 HU 的预测效果最佳,围手术期、社会经济状况、少数民族状况和语言是关键的预测因素。结论研究结果凸显了 SDH 在 ACDF 结果中的作用,表明了分层干预的价值,例如有针对性的资源分配、语言协调的护理和量身定制的随访。虽然依赖单一的医疗保健系统和替代 SDH 测量方法存在局限性,但这是第一项应用 ML 评估 ACDF 患者 SDH 的研究。还需要利用患者直接报告的 SDH 数据进行进一步验证,以完善预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Spine Journal
Global Spine Journal Medicine-Surgery
CiteScore
6.20
自引率
8.30%
发文量
278
审稿时长
8 weeks
期刊介绍: Global Spine Journal (GSJ) is the official scientific publication of AOSpine. A peer-reviewed, open access journal, devoted to the study and treatment of spinal disorders, including diagnosis, operative and non-operative treatment options, surgical techniques, and emerging research and clinical developments.GSJ is indexed in PubMedCentral, SCOPUS, and Emerging Sources Citation Index (ESCI).
期刊最新文献
Letter to "The Patient-Reported Outcomes of Postoperative Prostaglandin EI Derivative in Lumbar Spine Surgery: A Randomized, Double-Blind, Controlled Trial". Surgical Adverse Events After Anterior Stabilization of Subaxial Cervical Spine Injuries: A Nationwide Registry Study. Prehab the Labs: Predicting Surgical Outcomes in Spine Fractures Through Preoperative Lab Values. Adverse Events and Treatment Failure in Patients With Thoracolumbar Burst Fractures Without Neurological Deficit: A Sub Analysis From Prospective Multicentric Study. Can Social Function Improve in Older Patients Undergoing Multi-Level Spinal Deformity Surgery?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1