Quantum Merlin-Arthur proof systems for synthesizing quantum states

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-04-03 DOI:10.22331/q-2025-04-03-1688
Hugo Delavenne, François Le Gall, Yupan Liu, Masayuki Miyamoto
{"title":"Quantum Merlin-Arthur proof systems for synthesizing quantum states","authors":"Hugo Delavenne, François Le Gall, Yupan Liu, Masayuki Miyamoto","doi":"10.22331/q-2025-04-03-1688","DOIUrl":null,"url":null,"abstract":"Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class $\\sf{NP}$, referred to as $\\sf{stateQMA}$, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class $\\sf{stateQIP}$ recently introduced by Rosenthal and Yuen (ITCS 2022) [57], which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits ($\\sf{stateBQP}$) and space-uniform polynomial-space quantum circuits ($\\sf{statePSPACE}$). Furthermore, we establish that the family of $\\sf{UQMA}$ witnesses, considered as one of the most natural candidates for $\\sf{stateQMA}$ containments, is in $\\sf{stateQMA}$. Additionally, we demonstrate that $\\sf{stateQCMA}$ achieves perfect completeness.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"26 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-03-1688","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class $\sf{NP}$, referred to as $\sf{stateQMA}$, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class $\sf{stateQIP}$ recently introduced by Rosenthal and Yuen (ITCS 2022) [57], which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits ($\sf{stateBQP}$) and space-uniform polynomial-space quantum circuits ($\sf{statePSPACE}$). Furthermore, we establish that the family of $\sf{UQMA}$ witnesses, considered as one of the most natural candidates for $\sf{stateQMA}$ containments, is in $\sf{stateQMA}$. Additionally, we demonstrate that $\sf{stateQCMA}$ achieves perfect completeness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于合成量子态的量子梅林-阿瑟证明系统
复杂性理论通常关注使用经典输入和输出解决计算问题的难度,即使使用量子计算机也是如此。在量子世界中,应用不同的复杂性概念是很自然的,即合成量子态的复杂性。我们研究了类$\sf{NP}$的状态合成对应物,称为$\sf{stateQMA}$,它涉及借助于来自全能但不可信的证明者的单个量子消息,通过多项式时间量子验证者准备某些量子状态。这是最近由Rosenthal和Yuen (ITCS 2022)[57]引入的类$\sf{stateQIP}$的子类,它允许证明者和验证者之间进行多项式多次交互。我们的主要结果包括该类及其变量在指数小间隙或有界空间中的误差减少,以及该类与其他基本状态合成类的关系,即由均匀多项式时间量子电路($\sf{stateBQP}$)和空间均匀多项式空间量子电路($\sf{statePSPACE}$)产生的状态。此外,我们建立了$\sf{UQMA}$见证族,作为$\sf{stateQMA}$包含的最自然的候选者之一,在$\sf{stateQMA}$中。此外,我们还证明了$\sf{stateQCMA}$达到了完美的完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Quantized Markov Chain Couplings that Prepare Qsamples Multi-time quantum process tomography on a superconducting qubit Performance Analysis of Quantum CSS Error-Correcting Codes via MacWilliams Identities Emergent Liouvillian exceptional points from exact principles GPU-accelerated Effective Hamiltonian Calculator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1