Fabrication and Characterization of a Tunable Microelectrode Array Probe for Simultaneous Multiplexed Electrochemical Detection

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-04-04 DOI:10.1021/acs.analchem.4c05175
Debashis Sen, Nicholas Volya, Yusuf Muhammed, Robert A. Lazenby
{"title":"Fabrication and Characterization of a Tunable Microelectrode Array Probe for Simultaneous Multiplexed Electrochemical Detection","authors":"Debashis Sen, Nicholas Volya, Yusuf Muhammed, Robert A. Lazenby","doi":"10.1021/acs.analchem.4c05175","DOIUrl":null,"url":null,"abstract":"Individually addressable microelectrode arrays (MEAs) enable the simultaneous and independent measurement of multiple analytes and benefit from a small size scale, which enables highly localized electrochemical detection. In this work, we describe a new methodology to fabricate low-cost and tunable MEA probes in which the number, spatial arrangement, and spacing of the electrodes and electrode material can be changed and controlled. This was achieved using a 3D printed support assembly to position wires of the electrode material into designated positions and a mold to seal the electrodes in place using epoxy resin. After curing of the epoxy, mechanical polishing exposed the surface of closely spaced disk microelectrodes embedded in the insulating material, which formed the MEA. The individual electrodes of the array were characterized using electrochemical methods and optical and electron microscopy to evaluate the surface quality and the integrity of the seal with the insulating epoxy. To validate the fabrication method and to demonstrate the controlled electrode spacing, we used a dual-disk electrode device, while four-, five-, and seven-electrode probes were used to demonstrate some of the different numbers and geometric arrangements of electrodes that are possible. While the developed probes have numerous potential applications, including as probes or substrates in scanning electrochemical microscopy, we fabricated electrochemical aptamer-based sensors on the individual electrodes, for the simultaneous detection of adenosine triphosphate and dopamine in phosphate-buffered saline solution, with and without 10% fetal bovine serum.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"37 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05175","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Individually addressable microelectrode arrays (MEAs) enable the simultaneous and independent measurement of multiple analytes and benefit from a small size scale, which enables highly localized electrochemical detection. In this work, we describe a new methodology to fabricate low-cost and tunable MEA probes in which the number, spatial arrangement, and spacing of the electrodes and electrode material can be changed and controlled. This was achieved using a 3D printed support assembly to position wires of the electrode material into designated positions and a mold to seal the electrodes in place using epoxy resin. After curing of the epoxy, mechanical polishing exposed the surface of closely spaced disk microelectrodes embedded in the insulating material, which formed the MEA. The individual electrodes of the array were characterized using electrochemical methods and optical and electron microscopy to evaluate the surface quality and the integrity of the seal with the insulating epoxy. To validate the fabrication method and to demonstrate the controlled electrode spacing, we used a dual-disk electrode device, while four-, five-, and seven-electrode probes were used to demonstrate some of the different numbers and geometric arrangements of electrodes that are possible. While the developed probes have numerous potential applications, including as probes or substrates in scanning electrochemical microscopy, we fabricated electrochemical aptamer-based sensors on the individual electrodes, for the simultaneous detection of adenosine triphosphate and dopamine in phosphate-buffered saline solution, with and without 10% fetal bovine serum.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于同时多路电化学检测的可调谐微电极阵列探针的制备与表征
可单独寻址的微电极阵列(MEAs)能够同时独立测量多种分析物,而且体积小,可实现高度局部电化学检测。在这项工作中,我们介绍了一种制造低成本、可调式 MEA 探针的新方法,其中电极的数量、空间排列和间距以及电极材料都可以改变和控制。这是利用三维打印的支撑组件将电极材料线定位到指定位置,并利用环氧树脂模具将电极密封到位。环氧树脂固化后,机械抛光暴露出嵌入绝缘材料中的紧密间隔的圆盘微电极表面,从而形成 MEA。使用电化学方法、光学和电子显微镜对阵列的各个电极进行了表征,以评估表面质量以及与绝缘环氧树脂密封的完整性。为了验证制作方法并演示可控的电极间距,我们使用了双盘电极装置,同时还使用了四电极、五电极和七电极探针来演示可能存在的一些不同数量和几何排列的电极。所开发的探针有许多潜在应用,包括用作扫描电化学显微镜的探针或基底,同时我们还在单个电极上制作了基于电化学适配体的传感器,用于同时检测磷酸盐缓冲盐溶液(含或不含 10%胎牛血清)中的三磷酸腺苷和多巴胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Mineralized Remains as Adjacent Proxy for Radiocarbon Dating. Wettability-Enhanced Photothermal Vertical Flow Biosensor on a Syringe for PSA Detection Using TaTe2 Nanosheets. A Self-Powered Wearable Mechanoluminescent-Hydrovoltaic Patch for Multimodal Sensing Application and Energy Harvesting. Methods for Blood Separation and Detection in Laboratory, On-Site, and Home-Based Scenarios. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1