Optimal decorrelated score subsampling for Cox regression with massive survival data

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-04-05 DOI:10.1016/j.neucom.2025.130090
Yujing Shao , Zhaohan Hou , Lei Wang , Heng Lian
{"title":"Optimal decorrelated score subsampling for Cox regression with massive survival data","authors":"Yujing Shao ,&nbsp;Zhaohan Hou ,&nbsp;Lei Wang ,&nbsp;Heng Lian","doi":"10.1016/j.neucom.2025.130090","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates optimal subsampling strategies for the preconceived low-dimensional parameters of main interest in the presence of the nuisance parameters for Cox regression with massive survival data. A general subsampling decorrelated score function based on the log-partial likelihood is constructed to reduce the influence of the less accurate nuisance parameter estimation with a possibly slow convergence rate. The consistency and asymptotic normality of the resultant subsample estimators are established. We derive unified optimal subsampling probabilities based on A- and L-optimality criteria. A two-step algorithm is further proposed to implement practically, and the asymptotic properties of the resultant estimators are also given. The satisfactory performance of our proposed subsample estimators is demonstrated by simulation results and an airline dataset.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130090"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225007623","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates optimal subsampling strategies for the preconceived low-dimensional parameters of main interest in the presence of the nuisance parameters for Cox regression with massive survival data. A general subsampling decorrelated score function based on the log-partial likelihood is constructed to reduce the influence of the less accurate nuisance parameter estimation with a possibly slow convergence rate. The consistency and asymptotic normality of the resultant subsample estimators are established. We derive unified optimal subsampling probabilities based on A- and L-optimality criteria. A two-step algorithm is further proposed to implement practically, and the asymptotic properties of the resultant estimators are also given. The satisfactory performance of our proposed subsample estimators is demonstrated by simulation results and an airline dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用海量生存数据进行 Cox 回归的最佳装饰相关得分子采样
本文研究了具有大量生存数据的Cox回归中存在干扰参数时预设的低维参数的最优子抽样策略。构造了一种基于对数偏似然的通用子抽样去相关评分函数,以减少可能收敛速度较慢的不准确的干扰参数估计的影响。建立了所得子样本估计量的相合性和渐近正态性。基于A-和l -最优准则,导出了统一的最优子抽样概率。进一步提出了一种两步算法,并给出了所得到的估计量的渐近性质。仿真结果和航空公司数据集证明了我们提出的子样本估计器的令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Dismantling strategies for cost networks based on multi-view deep learning Contrastive coarse-to-fine medical segmentation with prototype guidance and dual-granularity fusion LECMARL: A cooperative multi-agent reinforcement learning method based on lazy mechanisms and efficient exploration Offset-corrected query generation strategies for cross-modality misalignment in 3D object detection: aligning LiDAR and camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1