WiCamera: Vortex Electromagnetic Wave-Based WiFi Imaging

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-12-18 DOI:10.1109/TMC.2024.3519623
Leiyang Xu;Xiaolong Zheng;Xinrun Du;Liang Liu;Huadong Ma
{"title":"WiCamera: Vortex Electromagnetic Wave-Based WiFi Imaging","authors":"Leiyang Xu;Xiaolong Zheng;Xinrun Du;Liang Liu;Huadong Ma","doi":"10.1109/TMC.2024.3519623","DOIUrl":null,"url":null,"abstract":"Current WiFi imaging approaches focus on monitoring dynamic targets to facilitate easy object distinction and capture rich signal reflections for image construction. In static object imaging, massive antenna array or emulated antenna array is often necessary. We propose <i>WiCamera</i>, a novel WiFi imaging prototype that utilizes vortex electromagnetic waves (VEMWs) to monitor stationary human postures using commodity WiFi, by generating human silhouettes with only <inline-formula><tex-math>$3 \\times 3$</tex-math></inline-formula> MIMO. VEMWs possess a helical wavefront with different phase variations, enabling the imaging of stationary objects through different OAM (Orbital Angular Momentum) modes with time-division multiplexing. <i>WiCamera</i> emits three OAM modes waves from WiFi devices and utilizes their phase variations for imaging. By ray tracing the received signals to a target image plane, <i>WiCamera</i> generates a wavefront image. A generative adversarial network (GAN)-based model is further utilized to refine the wavefront image and create a high-resolution human silhouette. The system's output images are evaluated using metrics such as structural similarity index measure (SSIM) and Szymkiewicz-Simpson coefficient (SSC), comparing them to ground truth images captured by cameras. The evaluation shows that <i>WiCamera</i> performs consistently well in various environments and with different users, with an SSIM reaching up to 0.89 and an SSC reaching up to 0.93.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"3633-3649"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10806892/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Current WiFi imaging approaches focus on monitoring dynamic targets to facilitate easy object distinction and capture rich signal reflections for image construction. In static object imaging, massive antenna array or emulated antenna array is often necessary. We propose WiCamera, a novel WiFi imaging prototype that utilizes vortex electromagnetic waves (VEMWs) to monitor stationary human postures using commodity WiFi, by generating human silhouettes with only $3 \times 3$ MIMO. VEMWs possess a helical wavefront with different phase variations, enabling the imaging of stationary objects through different OAM (Orbital Angular Momentum) modes with time-division multiplexing. WiCamera emits three OAM modes waves from WiFi devices and utilizes their phase variations for imaging. By ray tracing the received signals to a target image plane, WiCamera generates a wavefront image. A generative adversarial network (GAN)-based model is further utilized to refine the wavefront image and create a high-resolution human silhouette. The system's output images are evaluated using metrics such as structural similarity index measure (SSIM) and Szymkiewicz-Simpson coefficient (SSC), comparing them to ground truth images captured by cameras. The evaluation shows that WiCamera performs consistently well in various environments and with different users, with an SSIM reaching up to 0.89 and an SSC reaching up to 0.93.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WiCamera:涡流电磁波WiFi成像
目前的 WiFi 成像方法侧重于监测动态目标,以便于区分物体,并捕捉丰富的信号反射来构建图像。在静态物体成像中,通常需要大规模天线阵列或仿真天线阵列。我们提出的WiCamera是一种新颖的WiFi成像原型,它利用涡旋电磁波(VEMWs)来监测静止的人体姿态,只需3美元的多输入多输出(MIMO)就能生成人体剪影。涡旋波具有不同相位变化的螺旋波面,可通过不同的OAM(轨道角动量)模式和时分复用技术对静止物体进行成像。WiCamera 从 WiFi 设备发射三种 OAM 模式波,并利用其相位变化进行成像。通过将接收到的信号光线追踪到目标图像平面,WiCamera 可生成波前图像。基于生成式对抗网络(GAN)的模型被进一步用于完善波前图像并创建高分辨率的人体轮廓。该系统的输出图像采用结构相似性指数(SSIM)和 Szymkiewicz-Simpson 系数(SSC)等指标进行评估,并与摄像头捕捉的地面真实图像进行比较。评估结果表明,WiCamera 在不同环境和不同用户中的表现始终如一,其结构相似性指数最高达 0.89,SSC 最高达 0.93。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Multi-Layer Scheduling in Gig Platforms Using a Generative Diffusion Model With Duality Guidance Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-Play Neural Network Toolbox Enabling Edge Deployment Bi-CrowdCache: A Decentralized Game-Theoretic Model for Edge Content Sharing Over Time-Varying Communication Networks Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks A Hybrid Model With Bayesian Nonparametric Inference for RF Fingerprint Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1