Minimal Structural Variation of GPR84 Full Agonist Causes Functional Switch to Inverse Agonism.

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2025-04-24 Epub Date: 2025-04-04 DOI:10.1021/acs.jmedchem.4c02335
Loukas Ieremias, Asmita Manandhar, Katrine Schultz-Knudsen, Mads Holmgaard Kaspersen, Christina Ioanna Vrettou, Elisabeth Rexen Ulven, Trond Ulven
{"title":"Minimal Structural Variation of GPR84 Full Agonist Causes Functional Switch to Inverse Agonism.","authors":"Loukas Ieremias, Asmita Manandhar, Katrine Schultz-Knudsen, Mads Holmgaard Kaspersen, Christina Ioanna Vrettou, Elisabeth Rexen Ulven, Trond Ulven","doi":"10.1021/acs.jmedchem.4c02335","DOIUrl":null,"url":null,"abstract":"<p><p>GPR84 is an orphan GPCR that is expressed primarily in immune cells such as neutrophils and macrophages, and that modulates immune responses during inflammation. The receptor has appeared as a promising drug target, and accumulating evidence indicates that GPR84 inhibition is a viable approach for treatment of various inflammatory and fibrotic disorders. Herein, we report the discovery of a minor structural modification resulting in functional switch of agonists to inverse agonists. Subsequent SAR explorations led to the identification of low-nanomolar potency inverse agonists and antagonists, as exemplified by TUG-2181 (<b>40g</b>). Representative compounds exhibited good physicochemical properties, selectivity over other free fatty acid receptors, and the ability to fully inhibit GPR84-mediated neutrophil activation.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":"7973-8009"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02335","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

GPR84 is an orphan GPCR that is expressed primarily in immune cells such as neutrophils and macrophages, and that modulates immune responses during inflammation. The receptor has appeared as a promising drug target, and accumulating evidence indicates that GPR84 inhibition is a viable approach for treatment of various inflammatory and fibrotic disorders. Herein, we report the discovery of a minor structural modification resulting in functional switch of agonists to inverse agonists. Subsequent SAR explorations led to the identification of low-nanomolar potency inverse agonists and antagonists, as exemplified by TUG-2181 (40g). Representative compounds exhibited good physicochemical properties, selectivity over other free fatty acid receptors, and the ability to fully inhibit GPR84-mediated neutrophil activation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPR84完全激动剂的微小结构变化导致功能转换为反向激动剂。
GPR84 是一种孤儿 GPCR,主要在中性粒细胞和巨噬细胞等免疫细胞中表达,并在炎症过程中调节免疫反应。该受体已成为一个有前景的药物靶点,越来越多的证据表明,抑制 GPR84 是治疗各种炎症和纤维化疾病的可行方法。在此,我们报告发现了一种微小的结构修饰,这种修饰导致了激动剂向反向激动剂的功能转换。随后的 SAR 探索发现了低纳摩尔效力的反向激动剂和拮抗剂,TUG-2181(40g)就是一个例子。代表性化合物具有良好的理化特性、对其他游离脂肪酸受体的选择性以及完全抑制 GPR84 介导的中性粒细胞活化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Cationizing Lugdunin through Trp3 Hydrophobic Fine-Tuning and Cationic Side Chain Engineering. A Series of Pyrazolo-Quinazoline Amines Inhibits the Cytochrome bd Oxidase in Mycobacterium tuberculosis. Translational Suppression of KRAS and NRAS via RNA G-Quadruplex-Targeting Small Molecules for Colorectal Cancer Therapy. Correction to “Fragment-to-Lead Medicinal Chemistry Publications in 2024: A Tenth Annual Perspective” A Macrophage-Specific PET Tracer for Grading Acute Liver Injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1