Architecting a Bias-Free Photoelectrochemical CO2 Reduction System for Sustainable Formic Acid

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-04-04 DOI:10.1002/advs.202415774
Yinchao Yao, Zilong Wu, Zhiwei Zhao, Zhiyi Sun, Tiesong Li, Zebiao Li, Xinxin Lu, Zhuo Chen
{"title":"Architecting a Bias-Free Photoelectrochemical CO2 Reduction System for Sustainable Formic Acid","authors":"Yinchao Yao,&nbsp;Zilong Wu,&nbsp;Zhiwei Zhao,&nbsp;Zhiyi Sun,&nbsp;Tiesong Li,&nbsp;Zebiao Li,&nbsp;Xinxin Lu,&nbsp;Zhuo Chen","doi":"10.1002/advs.202415774","DOIUrl":null,"url":null,"abstract":"<p>Solar-driven photoelectrochemical CO<sub>2</sub> reduction represents a promising approach for the production of renewable liquid fuel but is limited by low photocurrent, the need for an external bias, and low carbon efficiency. This work employs a TiO<sub>2</sub>-CdS/Se-ZnSe/S photoanode to drive the sulfur oxidation reaction, achieving a photocurrent density of 12.7 mAcm<sup>−2</sup> under AM 1.5G illumination and with an 87% retention after 100 h of continuous operation. Furthermore, through tailoring the adsorption capability for the <sup>*</sup>OCHO intermediate, the Cu<sub>6</sub>Sn<sub>5</sub> catalyst exhibits a Faradaic efficiency of 92.8% for formic acid at −1.15 V in acidic media and maintains stability above 90% during a 120-h test. Finally, the constructed system achieves bias-free photoelectrochemical CO<sub>2</sub> reduction to HCOOH and delivers a yield of up to 172.9 µmolh<sup>−1</sup>cm<sup>−2</sup> over an 85-h long-term test, outperforming conventional solar-driven systems. These findings highlight a cost-effective strategy for solar-driven liquid fuel production and provide valuable design concepts and insights into the development of photoelectrochemical systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 21","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202415774","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202415774","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven photoelectrochemical CO2 reduction represents a promising approach for the production of renewable liquid fuel but is limited by low photocurrent, the need for an external bias, and low carbon efficiency. This work employs a TiO2-CdS/Se-ZnSe/S photoanode to drive the sulfur oxidation reaction, achieving a photocurrent density of 12.7 mAcm−2 under AM 1.5G illumination and with an 87% retention after 100 h of continuous operation. Furthermore, through tailoring the adsorption capability for the *OCHO intermediate, the Cu6Sn5 catalyst exhibits a Faradaic efficiency of 92.8% for formic acid at −1.15 V in acidic media and maintains stability above 90% during a 120-h test. Finally, the constructed system achieves bias-free photoelectrochemical CO2 reduction to HCOOH and delivers a yield of up to 172.9 µmolh−1cm−2 over an 85-h long-term test, outperforming conventional solar-driven systems. These findings highlight a cost-effective strategy for solar-driven liquid fuel production and provide valuable design concepts and insights into the development of photoelectrochemical systems.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建无偏置光电化学CO2还原系统可持续甲酸。
太阳能驱动的光电化学二氧化碳还原技术是生产可再生液体燃料的一种很有前途的方法,但受到低光电流、需要外部偏压和低碳效率的限制。本研究采用TiO2-CdS/Se-ZnSe/S光阳极驱动硫氧化反应,在AM 1.5G照明下实现了12.7 mAcm-2的光电流密度,连续工作100 h后保持率为87%。此外,通过调整对*OCHO中间体的吸附能力,Cu6Sn5催化剂在酸性介质中-1.15 V时对甲酸的法拉第效率为92.8%,并在120 h的测试中保持90%以上的稳定性。最后,构建的系统实现了无偏倚的光电化学CO2还原到HCOOH,并在85小时的长期测试中提供了高达172.9µmol -1cm-2的产率,优于传统的太阳能驱动系统。这些发现强调了太阳能驱动液体燃料生产的成本效益策略,并为光电化学系统的发展提供了有价值的设计概念和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Strain-Assembled Crystalline SrRuO3 Microtube and Emergent Curvilinear Magnetism. Thermoelectric Property Mapping for High-Performance Integrated MgAgSb-MgCuSb System. A Biomarker-Driven Ovary-Endometrium Organ-on-a-Chip Mimicking 3D Multicellular Complexity and Menstrual Cyclicity for Predicting Reproductive Toxicity. Precision-Engineered Silver Single-Atom Carbon Dot Nanozymes for Theranostic Management of Acute Kidney Injury. Real-Time High-Definition Hyperspectral Endoscopy via Spatial-Temporal Low-Frequency-Stochastic Spectral Encoding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1