AlertGS: determining alerts for gene sets.

Franziska Kappenberg, Jörg Rahnenführer
{"title":"AlertGS: determining alerts for gene sets.","authors":"Franziska Kappenberg, Jörg Rahnenführer","doi":"10.1093/bioinformatics/btaf133","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>A typical goal in gene expression studies is identifying certain gene sets enriched with significant genes. The measurement of many gene expression experiments for several concentrations or time points allows the modeling of the concentration/time-response relationship for each gene, and the subsequent estimation of a gene-wise alert. In this work, an approach is proposed to transfer the concept of alerts from single genes to gene sets, yielding a global significance statement and the respective concentration or time where the first enrichment of the gene set can be observed. The methodology is based on a Kolmogorov-Smirnoff type test statistic for each gene set.</p><p><strong>Results: </strong>Simulations show that a majority of these sets can be identified especially for lower numbers of true gene sets with a signal. The false positive rate can be controlled by subsequent decorrelation approaches. Overall, the true gene set-wise alerts are rarely overestimated and rather tend to be underestimated.</p><p><strong>Availability and implementation: </strong>The code needed to reproduce the simulations and apply the AlertGS methodology is available at the GitHub repository: https://github.com/FKappenberg/AlertGS.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: A typical goal in gene expression studies is identifying certain gene sets enriched with significant genes. The measurement of many gene expression experiments for several concentrations or time points allows the modeling of the concentration/time-response relationship for each gene, and the subsequent estimation of a gene-wise alert. In this work, an approach is proposed to transfer the concept of alerts from single genes to gene sets, yielding a global significance statement and the respective concentration or time where the first enrichment of the gene set can be observed. The methodology is based on a Kolmogorov-Smirnoff type test statistic for each gene set.

Results: Simulations show that a majority of these sets can be identified especially for lower numbers of true gene sets with a signal. The false positive rate can be controlled by subsequent decorrelation approaches. Overall, the true gene set-wise alerts are rarely overestimated and rather tend to be underestimated.

Availability and implementation: The code needed to reproduce the simulations and apply the AlertGS methodology is available at the GitHub repository: https://github.com/FKappenberg/AlertGS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AlertGS:确定基因集的警报。
动机基因表达研究的一个典型目标是确定某些富含重要基因的基因集。通过对多个浓度或时间点的多个基因表达实验进行测量,可以为每个基因的浓度/时间-响应关系建模,进而估算出基因警戒值。在这项工作中,提出了一种将警报概念从单个基因转移到基因组的方法,从而得出一个全局重要性声明以及可以观察到基因组首次富集的相应浓度或时间。该方法基于每个基因组的 Kolmogorov-Smirnoff 类型检验统计量:模拟结果表明,这些基因组中的大多数都能被识别出来,尤其是在有信号的真实基因组数量较少的情况下。假阳性率可通过后续的去相关性方法加以控制。总的来说,真正的基因集警报很少被高估,反而有被低估的趋势:重现模拟和应用 AlertGS 方法所需的代码可从 GitHub 存储库 https://github.com/FKappenberg/AlertGS.Supplementary 获取:补充材料可在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RoBep: A Region-Oriented Deep Learning Model for B-Cell Epitope Prediction. mimicDetector: a pipeline for protein motif mimicry detection in host-pathogen interactions. Malaria-GENOMAP: A web-based tool for exploring genomic variation of malaria parasites. Capturing gene-cell duality in a cat's cradle. From Articles to Code: On-Demand Generation of Core Algorithms from Scientific Publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1