Advancing Visual Perception Through VCANet-Crossover Osprey Algorithm: Integrating Visual Technologies.

Yuwen Ning, Jiaxin Li, Shuyi Sun
{"title":"Advancing Visual Perception Through VCANet-Crossover Osprey Algorithm: Integrating Visual Technologies.","authors":"Yuwen Ning, Jiaxin Li, Shuyi Sun","doi":"10.1007/s10278-025-01467-w","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a significant vision-threatening condition, necessitating accurate and efficient automated screening methods. Traditional deep learning (DL) models struggle to detect subtle lesions and also suffer from high computational complexity. Existing models primarily mimic the primary visual cortex (V1) of the human visual system, neglecting other higher-order processing regions. To overcome these limitations, this research introduces the vision core-adapted network-based crossover osprey algorithm (VCANet-COP) for subtle lesion recognition with better computational efficiency. The model integrates sparse autoencoders (SAEs) to extract vascular structures and lesion-specific features at a pixel level for improved abnormality detection. The front-end network in the VCANet emulates the V1, V2, V4, and inferotemporal (IT) regions to derive subtle lesions effectively and improve lesion detection accuracy. Additionally, the COP algorithm leveraging the osprey optimization algorithm (OOA) with a crossover strategy optimizes hyperparameters and network configurations to ensure better computational efficiency, faster convergence, and enhanced performance in lesion recognition. The experimental assessment of the VCANet-COP model on multiple DR datasets namely Diabetic_Retinopathy_Data (DR-Data), Structured Analysis of the Retina (STARE) dataset, Indian Diabetic Retinopathy Image Dataset (IDRiD), Digital Retinal Images for Vessel Extraction (DRIVE) dataset, and Retinal fundus multi-disease image dataset (RFMID) demonstrates superior performance over baseline works, namely EDLDR, FFU_Net, LSTM_MFORG, fundus-DeepNet, and CNN_SVD by achieving average outcomes of 98.14% accuracy, 97.9% sensitivity, 98.08% specificity, 98.4% precision, 98.1% F1-score, 96.2% kappa coefficient, 2.0% false positive rate (FPR), 2.1% false negative rate (FNR), and 1.5-s execution time. By addressing critical limitations, VCANet-COP provides a scalable and robust solution for real-world DR screening and clinical decision support.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01467-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic retinopathy (DR) is a significant vision-threatening condition, necessitating accurate and efficient automated screening methods. Traditional deep learning (DL) models struggle to detect subtle lesions and also suffer from high computational complexity. Existing models primarily mimic the primary visual cortex (V1) of the human visual system, neglecting other higher-order processing regions. To overcome these limitations, this research introduces the vision core-adapted network-based crossover osprey algorithm (VCANet-COP) for subtle lesion recognition with better computational efficiency. The model integrates sparse autoencoders (SAEs) to extract vascular structures and lesion-specific features at a pixel level for improved abnormality detection. The front-end network in the VCANet emulates the V1, V2, V4, and inferotemporal (IT) regions to derive subtle lesions effectively and improve lesion detection accuracy. Additionally, the COP algorithm leveraging the osprey optimization algorithm (OOA) with a crossover strategy optimizes hyperparameters and network configurations to ensure better computational efficiency, faster convergence, and enhanced performance in lesion recognition. The experimental assessment of the VCANet-COP model on multiple DR datasets namely Diabetic_Retinopathy_Data (DR-Data), Structured Analysis of the Retina (STARE) dataset, Indian Diabetic Retinopathy Image Dataset (IDRiD), Digital Retinal Images for Vessel Extraction (DRIVE) dataset, and Retinal fundus multi-disease image dataset (RFMID) demonstrates superior performance over baseline works, namely EDLDR, FFU_Net, LSTM_MFORG, fundus-DeepNet, and CNN_SVD by achieving average outcomes of 98.14% accuracy, 97.9% sensitivity, 98.08% specificity, 98.4% precision, 98.1% F1-score, 96.2% kappa coefficient, 2.0% false positive rate (FPR), 2.1% false negative rate (FNR), and 1.5-s execution time. By addressing critical limitations, VCANet-COP provides a scalable and robust solution for real-world DR screening and clinical decision support.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过VCANet-Crossover鱼鹰算法提升视觉感知:集成视觉技术。
糖尿病视网膜病变(DR)是一种严重威胁视力的疾病,需要准确高效的自动筛查方法。传统的深度学习(DL)模型难以检测到细微病变,而且计算复杂度高。现有模型主要模仿人类视觉系统的初级视觉皮层(V1),忽略了其他高阶处理区域。为了克服这些局限性,本研究引入了基于视觉核心适配网络的交叉鱼鹰算法(VCANet-COP),以更高的计算效率识别细微病变。该模型集成了稀疏自动编码器(SAE),以提取像素级的血管结构和病变特定特征,从而改进异常检测。VCANet 中的前端网络模拟了 V1、V2、V4 和颞下部(IT)区域,可有效提取细微病变,提高病变检测的准确性。此外,COP 算法利用带有交叉策略的鱼鹰优化算法(OOA)优化超参数和网络配置,以确保更好的计算效率、更快的收敛速度和更高的病变识别性能。在多个糖尿病视网膜病变数据集(即糖尿病视网膜病变数据集(DR-Data)、视网膜结构分析数据集(STARE)、印度糖尿病视网膜病变图像数据集(IDRiD))上对 VCANet-COP 模型进行了实验评估、数字视网膜血管提取图像数据集(DRIVE)和视网膜眼底多种疾病图像数据集(RFMID)的性能优于基线研究成果,即 EDLDR、FFU_Net、LSTM_MFORG、fundus-DeepNet 和 CNN_SVD,平均准确率达到 98.14% 的准确率、97.9% 的灵敏度、98.08% 的特异性、98.4% 的精确度、98.1% 的 F1 分数、96.2% 的卡帕系数、2.0% 的假阳性率 (FPR)、2.1% 的假阴性率 (FNR) 和 1.5 秒的执行时间。通过解决关键的局限性问题,VCANet-COP 为真实世界的 DR 筛查和临床决策支持提供了一个可扩展的强大解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness of AI-CAD Software for Breast Cancer Detection in Automated Breast Ultrasound. Topological Feature Extraction from Multi-color Channels for Pattern Recognition: An Application to Fundus Image Analysis. A Hybrid YOLOv8s+Swin-T Transformer Approach for Automated Caries Detection on Periapical Radiographs. Improving Chronological Age Estimation in Children Using the Demirjian Method Enhanced with Transformer and Regression Models. Harnessing Native-Resolution 2D Embeddings for Lung Cancer Classification: A Feasibility Study with the RAD-DINO Self-supervised Foundation Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1