Accurate Determination of Isotope Effects on the Dynamics of H-Bond Breaking and Making in Liquid Water

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-04-05 DOI:10.1021/acs.jpclett.5c00210
Ravi Malik, Nore Stolte, Harald Forbert, Amalendu Chandra, Dominik Marx
{"title":"Accurate Determination of Isotope Effects on the Dynamics of H-Bond Breaking and Making in Liquid Water","authors":"Ravi Malik, Nore Stolte, Harald Forbert, Amalendu Chandra, Dominik Marx","doi":"10.1021/acs.jpclett.5c00210","DOIUrl":null,"url":null,"abstract":"Isotopic substitution of light hydrogen atoms with heavier deuterium atoms in liquid water renders the resulting liquid, heavy water (D<sub>2</sub>O), poisonous to most organisms when it replaces a critical fraction of water in living organisms. The mechanisms through which heavy water disrupts biological function are challenging to disentangle experimentally. Isotopic substitution has long been known to affect the H-bond dynamics of liquid water, but experiments have yet to quantify the extent of the differences in the time scales of H-bond breaking and making processes between H<sub>2</sub>O and D<sub>2</sub>O. In this work, we analyze H-bond dynamics through extensive coupled cluster-quality path integral simulations of H<sub>2</sub>O and D<sub>2</sub>O under ambient conditions that grant access to unambiguous molecular analyses. We find substantial isotope substitution effects on the rates of H-bond formation and breaking, and H-bond lifetimes, with dynamics in D<sub>2</sub>O ∼25% slower than in H<sub>2</sub>O. The toxicity of D<sub>2</sub>O can thus be ascribed, at least in part, to the effect of slowed H-bond dynamics on biochemical reactions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"34 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00210","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Isotopic substitution of light hydrogen atoms with heavier deuterium atoms in liquid water renders the resulting liquid, heavy water (D2O), poisonous to most organisms when it replaces a critical fraction of water in living organisms. The mechanisms through which heavy water disrupts biological function are challenging to disentangle experimentally. Isotopic substitution has long been known to affect the H-bond dynamics of liquid water, but experiments have yet to quantify the extent of the differences in the time scales of H-bond breaking and making processes between H2O and D2O. In this work, we analyze H-bond dynamics through extensive coupled cluster-quality path integral simulations of H2O and D2O under ambient conditions that grant access to unambiguous molecular analyses. We find substantial isotope substitution effects on the rates of H-bond formation and breaking, and H-bond lifetimes, with dynamics in D2O ∼25% slower than in H2O. The toxicity of D2O can thus be ascribed, at least in part, to the effect of slowed H-bond dynamics on biochemical reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确测定同位素对液态水中 H 键断裂和生成动力学的影响
在液态水中,轻氢原子与较重的氘原子的同位素取代产生的液体重水(D2O),当它取代生物体中临界部分的水时,对大多数生物体有毒。重水破坏生物功能的机制在实验上具有挑战性。人们早就知道同位素取代会影响液态水的氢键动力学,但实验尚未量化H2O和D2O之间氢键断裂和形成过程的时间尺度差异的程度。在这项工作中,我们通过在环境条件下对H2O和D2O进行广泛的耦合簇质量路径积分模拟来分析氢键动力学,从而获得明确的分子分析。我们发现同位素取代对氢键形成和断裂的速率以及氢键寿命有显著影响,其中D2O中的动力学比H2O慢25%。因此,D2O的毒性至少可以部分归因于氢键动力学减慢对生化反应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Atomic Force Microscopy Captures Light-Induced Higher-Order Structural Dynamics in Photosystem II Supercomplexes. Predicting Complete Basis Set Limit Quasiparticle Energies from Triple-ζ Calculations How Crystal Size and Number Steer Asymmetric Crystallization Direct Experimental Evidence for Reverse Internal Conversion in the Relaxation Pathway of the Excited Anions Profiling the Electron Trap States of II-VI Chalcogenide Colloidal Quantum Dots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1