Interlayer engineering-induced charge redistribution in Bi2Te3 toward efficient Zn2+ and NH4+ storage†

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-04-05 DOI:10.1039/D5SC01210D
Xiaojie Liang, Fangzhong Liu, Haonan Yue, Yaoyong Dong, Lijuan Chen, Ting Song, Yong Pei, Xianyou Wang, Bei Long, Yao Xiao and Xiongwei Wu
{"title":"Interlayer engineering-induced charge redistribution in Bi2Te3 toward efficient Zn2+ and NH4+ storage†","authors":"Xiaojie Liang, Fangzhong Liu, Haonan Yue, Yaoyong Dong, Lijuan Chen, Ting Song, Yong Pei, Xianyou Wang, Bei Long, Yao Xiao and Xiongwei Wu","doi":"10.1039/D5SC01210D","DOIUrl":null,"url":null,"abstract":"<p >Bismuth-based materials show promise for aqueous energy storage systems due to their unique layered structures and high storage capacity. Some bismuth-based materials have been applied to store Zn<small><sup>2+</sup></small> or NH<small><sub>4</sub></small><small><sup>+</sup></small>, indicating that one bismuth-based compound may be innovatively used in both zinc-ion and ammonium-ion batteries (ZIBs and AIBs). Herein, we successfully design a poly(3,4-ethylenedioxythiophene) (PEDOT) coated and embedded Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> (Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>@PEDOT). Theoretical calculations and experimental studies demonstrate that the PEDOT coating and its intercalation into the interlayer enhance the structural stability of Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> and significantly improve the storage capacities for Zn<small><sup>2+</sup></small> and NH<small><sub>4</sub></small><small><sup>+</sup></small>. The PEDOT intercalation results in an increased interlayer spacing and a charge redistribution in the interlayer, facilitating charge transfer. Additionally, the insertion-type mechanism of Zn<small><sup>2+</sup></small> and NH<small><sub>4</sub></small><small><sup>+</sup></small> in Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>@PEDOT is revealed through <em>ex situ</em> tests. The optimized electrode (5 mg cm<small><sup>−2</sup></small>) exhibits high discharge capacities of 385 mA h g<small><sup>−1</sup></small> in ZIBs and 235 mA h g<small><sup>−1</sup></small> in AIBs at 0.2 A g<small><sup>−1</sup></small> and long-term cycle stability. Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>@PEDOT performs robustly even at a high mass loading of 10 mg cm<small><sup>−2</sup></small>. Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>@PEDOT//MnO<small><sub>2</sub></small> (ZIBs) and Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>@PEDOT//ZnMn<small><sub>2</sub></small>O<small><sub>4</sub></small> (AIBs) full cells offer high reversible capacities. This work provides a reference for designing bifunctional energy storage materials.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 19","pages":" 8523-8531"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc01210d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc01210d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bismuth-based materials show promise for aqueous energy storage systems due to their unique layered structures and high storage capacity. Some bismuth-based materials have been applied to store Zn2+ or NH4+, indicating that one bismuth-based compound may be innovatively used in both zinc-ion and ammonium-ion batteries (ZIBs and AIBs). Herein, we successfully design a poly(3,4-ethylenedioxythiophene) (PEDOT) coated and embedded Bi2Te3 (Bi2Te3@PEDOT). Theoretical calculations and experimental studies demonstrate that the PEDOT coating and its intercalation into the interlayer enhance the structural stability of Bi2Te3 and significantly improve the storage capacities for Zn2+ and NH4+. The PEDOT intercalation results in an increased interlayer spacing and a charge redistribution in the interlayer, facilitating charge transfer. Additionally, the insertion-type mechanism of Zn2+ and NH4+ in Bi2Te3@PEDOT is revealed through ex situ tests. The optimized electrode (5 mg cm−2) exhibits high discharge capacities of 385 mA h g−1 in ZIBs and 235 mA h g−1 in AIBs at 0.2 A g−1 and long-term cycle stability. Bi2Te3@PEDOT performs robustly even at a high mass loading of 10 mg cm−2. Bi2Te3@PEDOT//MnO2 (ZIBs) and Bi2Te3@PEDOT//ZnMn2O4 (AIBs) full cells offer high reversible capacities. This work provides a reference for designing bifunctional energy storage materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层间工程诱导 Bi2Te3 中的电荷再分布,实现 Zn2+ 和 NH4+ 的高效存储
铋基材料因其独特的层状结构和高储能能力,在水性储能系统中大有可为。一些铋基材料已被应用于储存 Zn2+ 或 NH4+,这表明一种铋基化合物可创新性地应用于锌离子电池和铵离子电池(ZIBs 和 AIBs)。在此,我们成功地设计出了一种包覆和嵌入 Bi2Te3(Bi2Te3@PEDOT)的聚(3,4-亚乙二氧基噻吩)(PEDOT)。理论计算和实验研究表明,PEDOT 涂层及其在层间的插层增强了 Bi2Te3 的结构稳定性,并显著提高了对 Zn2+ 和 NH4+ 的存储容量。PEDOT 插层增加了层间间距,并使电荷在层间重新分布,从而促进了电荷转移。此外,通过原位测试还揭示了 Zn2+ 和 NH4+ 在 Bi2Te3@PEDOT 中的插入型机制。优化后的电极(5 mg cm-2)在 0.2 A g-1 的放电容量条件下,在 ZIBs 中的放电容量高达 385 mA h g-1,在 AIBs 中的放电容量高达 235 mA h g-1,并且具有长期循环稳定性。即使在 10 mg cm-2 的高负载条件下,Bi2Te3@PEDOT 也能保持稳定的性能。Bi2Te3@PEDOT//MnO2 (ZIBs)和 Bi2Te3@PEDOT//ZnMn2O4 (AIBs)全电池具有很高的可逆容量。这项工作为设计双功能储能材料提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Modulation of Nanoscale Sinuosity in Asymmetric Nano-Channel for High-Resolution Separation of Trace Xylene Isomer Impurities The Role of Cytosine Modification Symmetry in Mammalian Epigenome Regulation Sodium-based Donor-Acceptor Assemblies Featuring Thermally Activated Delayed Fluorescence Enabled by Highly Efficient Through-Space Charge Transfer Unconventional chalcogen-containing azolylidene metal complexes as potential anticancer therapeutics Alkaline Electrocatalytic Water Oxidation by Fe-Ni Nanostructures on Porous Turbostratic Carbon with Tailorable Metal-Metal Active Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1