Anisotropic Strain Observation in Naturally Occurring Buckling on Twisted Bilayer Graphene: A Nano-Raman Study

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-05 DOI:10.1021/acs.jpcc.5c00506
Gustavo Soares, Rafael R. Barreto, Rafael Nadas, Kenji Watanabe, Takashi Taniguchi, Leonardo C. Campos, Luiz G. Cançado, Angelo Malachias
{"title":"Anisotropic Strain Observation in Naturally Occurring Buckling on Twisted Bilayer Graphene: A Nano-Raman Study","authors":"Gustavo Soares, Rafael R. Barreto, Rafael Nadas, Kenji Watanabe, Takashi Taniguchi, Leonardo C. Campos, Luiz G. Cançado, Angelo Malachias","doi":"10.1021/acs.jpcc.5c00506","DOIUrl":null,"url":null,"abstract":"Twisted bilayer graphene (tBG) is an exuberant electronic system, exhibiting a wide variety of electronic behaviors intricately influenced by both the twist angle and internal built-in strain. In our study, we explore how naturally occurring variations in the mismatch angle in the bilayer graphene result in localized strain gradients. These gradients are sufficient to store elastic energy, promoting deterministic buckling phenomena. Utilizing tip-enhanced Raman spectroscopy, we conducted nanometer-scale mapping of twist angle, strain distribution, and elastic energy across tBG, identifying pronounced and deterministic fluctuations in Raman peak shifts, particularly within the 2D band on wrinkled areas. This analysis enabled us to distinguish between uniaxial and biaxial strain effects and to evaluate the elastic energy that remains within these structures. Supported by finite element modeling, our results elucidate the relationship between anisotropic strain dynamics and buckling behavior, enhancing our understanding of tBG’s mechanical properties. Our findings contribute to the field of strain engineering in tBG and suggest new possibilities for tailoring the electronic and structural characteristics of these materials at the nanoscale.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00506","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted bilayer graphene (tBG) is an exuberant electronic system, exhibiting a wide variety of electronic behaviors intricately influenced by both the twist angle and internal built-in strain. In our study, we explore how naturally occurring variations in the mismatch angle in the bilayer graphene result in localized strain gradients. These gradients are sufficient to store elastic energy, promoting deterministic buckling phenomena. Utilizing tip-enhanced Raman spectroscopy, we conducted nanometer-scale mapping of twist angle, strain distribution, and elastic energy across tBG, identifying pronounced and deterministic fluctuations in Raman peak shifts, particularly within the 2D band on wrinkled areas. This analysis enabled us to distinguish between uniaxial and biaxial strain effects and to evaluate the elastic energy that remains within these structures. Supported by finite element modeling, our results elucidate the relationship between anisotropic strain dynamics and buckling behavior, enhancing our understanding of tBG’s mechanical properties. Our findings contribute to the field of strain engineering in tBG and suggest new possibilities for tailoring the electronic and structural characteristics of these materials at the nanoscale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲双层石墨烯自然屈曲的各向异性应变观察:纳米拉曼研究
扭曲双层石墨烯(tBG)是一种活跃的电子系统,表现出各种各样的电子行为,这些行为受到扭曲角和内部内置应变的复杂影响。在我们的研究中,我们探索了双层石墨烯中失配角的自然变化是如何导致局部应变梯度的。这些梯度足以储存弹性能,促进确定性屈曲现象。利用尖端增强拉曼光谱,我们对tBG的扭转角、应变分布和弹性能进行了纳米尺度的测绘,确定了拉曼峰位移的明显和确定的波动,特别是在褶皱区域的二维波段内。该分析使我们能够区分单轴和双轴应变效应,并评估这些结构中剩余的弹性能。在有限元模型的支持下,我们的研究结果阐明了各向异性应变动力学与屈曲行为之间的关系,增强了我们对tBG力学性能的理解。我们的发现有助于tBG应变工程领域,并为在纳米尺度上定制这些材料的电子和结构特性提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Theoretical Study of High Harmonic Generation in Monolayer NbSe2 Electronic Structure and Defect-Induced Properties of Oxygen-Deficient CaMnO3−δ: Insights from First-Principles Calculations Nonadiabatic Dynamics of Ultrafast Interlayer Charge Transfer and Extended Photocarrier Lifetimes in GaSe/InTe Heterostructures Nonadiabatic Dynamics of Ultrafast Interlayer Charge Transfer and Extended Photocarrier Lifetimes in GaSe/InTe Heterostructures Spontaneous Folding of Suspended and Supported Graphene, and Other 2D Materials: Morphologies and Induced Pre-Tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1