SVRNN: A Spatiotemporal Prediction Model for Sea Surface Temperature Prediction in the Taiwan Strait

Haiqiang Chen;Yongxiang Chen;Zhenchang Zhang
{"title":"SVRNN: A Spatiotemporal Prediction Model for Sea Surface Temperature Prediction in the Taiwan Strait","authors":"Haiqiang Chen;Yongxiang Chen;Zhenchang Zhang","doi":"10.1109/LGRS.2025.3554296","DOIUrl":null,"url":null,"abstract":"Accurate prediction of sea surface temperature (SST) plays a critical role in climate research and marine ecosystem management. Traditional models predict trends by analyzing and fitting data, but they struggle with capturing long-range dependencies and complex spatiotemporal patterns. The transformer’s attention mechanism effectively addresses long-range dependencies, but its high computational complexity poses challenges. To overcome these limitations, this study proposes a novel spatiotemporal sequence prediction model: the spatiotemporal vision mamba recurrent neural network (SVRNN). The model innovatively integrates a bidirectional state-space processing mechanism and decoupled memory modules. The bidirectional mechanism maintains a global receptive field with linear computational complexity, while the decoupled memory modules explicitly separate spatiotemporal dependencies, enhancing the model’s ability to capture complex spatiotemporal patterns. During the experiment on hourly SST prediction in the Taiwan Strait, where the SST of the next 12 h was predicted using data from the previous 12 h, the SVRNN model demonstrated superior performance, achieving a root mean square error (RMSE) of <inline-formula> <tex-math>$0.159~^{\\circ }$ </tex-math></inline-formula>C, a mean absolute error (MAE) of <inline-formula> <tex-math>$0.105~^{\\circ }$ </tex-math></inline-formula>C, and a mean absolute percentage error (MAPE) of 0.496%. Furthermore, our seasonal error analysis reveals that the model exhibits robust performance in different seasons, providing more reliable technical support for SST prediction in Taiwan Strait.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938158/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of sea surface temperature (SST) plays a critical role in climate research and marine ecosystem management. Traditional models predict trends by analyzing and fitting data, but they struggle with capturing long-range dependencies and complex spatiotemporal patterns. The transformer’s attention mechanism effectively addresses long-range dependencies, but its high computational complexity poses challenges. To overcome these limitations, this study proposes a novel spatiotemporal sequence prediction model: the spatiotemporal vision mamba recurrent neural network (SVRNN). The model innovatively integrates a bidirectional state-space processing mechanism and decoupled memory modules. The bidirectional mechanism maintains a global receptive field with linear computational complexity, while the decoupled memory modules explicitly separate spatiotemporal dependencies, enhancing the model’s ability to capture complex spatiotemporal patterns. During the experiment on hourly SST prediction in the Taiwan Strait, where the SST of the next 12 h was predicted using data from the previous 12 h, the SVRNN model demonstrated superior performance, achieving a root mean square error (RMSE) of $0.159~^{\circ }$ C, a mean absolute error (MAE) of $0.105~^{\circ }$ C, and a mean absolute percentage error (MAPE) of 0.496%. Furthermore, our seasonal error analysis reveals that the model exhibits robust performance in different seasons, providing more reliable technical support for SST prediction in Taiwan Strait.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVRNN:台湾海峡海温的时空预测模型
准确的海温预测在气候研究和海洋生态系统管理中具有重要作用。传统模型通过分析和拟合数据来预测趋势,但它们难以捕捉长期依赖关系和复杂的时空模式。转换器的注意机制有效地处理了远程依赖关系,但是它的高计算复杂性带来了挑战。为了克服这些局限性,本研究提出了一种新的时空序列预测模型:时空视觉曼巴递归神经网络(SVRNN)。该模型创新性地集成了双向状态空间处理机制和解耦存储模块。双向机制维持了一个具有线性计算复杂性的全局接受场,而解耦的记忆模块明确地分离了时空依赖性,增强了模型捕捉复杂时空模式的能力。在台湾海峡每小时海温预测实验中,SVRNN模型利用过去12 h的海温数据预测未来12 h的海温,结果表明,SVRNN模型的均方根误差(RMSE)为$0.159~^{\circ}$ C,平均绝对误差(MAE)为$0.105~^{\circ}$ C,平均绝对百分比误差(MAPE)为0.496%。此外,季节误差分析表明,模型在不同季节表现稳健,为台湾海峡海温预报提供了更可靠的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1