Multiple heteroatom doped carbon nanocages with an open structure enabling superior electromagnetic wave absorption

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-01 DOI:10.1016/j.jcis.2025.137498
Sitong Sha , Nan Wang , Jiumin Cheng , Amjad Farid , Guodi Xu , Hui Huang , Chou Mo , Xiangcheng Li , Lulu Song , Yongpeng Zhao
{"title":"Multiple heteroatom doped carbon nanocages with an open structure enabling superior electromagnetic wave absorption","authors":"Sitong Sha ,&nbsp;Nan Wang ,&nbsp;Jiumin Cheng ,&nbsp;Amjad Farid ,&nbsp;Guodi Xu ,&nbsp;Hui Huang ,&nbsp;Chou Mo ,&nbsp;Xiangcheng Li ,&nbsp;Lulu Song ,&nbsp;Yongpeng Zhao","doi":"10.1016/j.jcis.2025.137498","DOIUrl":null,"url":null,"abstract":"<div><div>In comparison with pure carbon materials, the introduction of heteroatoms and the construction of hollow nanostructures can significantly enhance electromagnetic wave absorption properties. Herein, a multiple heteroatom-doped open nanocages with an amorphous structure was successfully designed and prepared. The introduction of heteroatoms, including Zn, Co, and N, results in charge redistribution and the formation of localized polarization centers within the carbon matrix, consequently enhancing dielectric loss. Meanwhile, the synergistic interplay between heteroatoms and defects in the carbon layer further intensifies space charge accumulation and local electric field formation, leading to enhanced dielectric loss. Furthermore, the open-structured nanocage dramatically improves electromagnetic wave penetration depth and energy dissipation efficiency by lowering material density, promoting impedance matching, and providing multiple scattering pathways. Experimental findings indicate that optimized sample achieves a minimum reflection loss of −48.59 dB at a thickness of only 1.82 mm, and an effective absorption bandwidth of 5.92 GHz. This approach thus represents a promising structural design strategy for advancing the performance of lightweight carbon-based microwave absorbing materials.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137498"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In comparison with pure carbon materials, the introduction of heteroatoms and the construction of hollow nanostructures can significantly enhance electromagnetic wave absorption properties. Herein, a multiple heteroatom-doped open nanocages with an amorphous structure was successfully designed and prepared. The introduction of heteroatoms, including Zn, Co, and N, results in charge redistribution and the formation of localized polarization centers within the carbon matrix, consequently enhancing dielectric loss. Meanwhile, the synergistic interplay between heteroatoms and defects in the carbon layer further intensifies space charge accumulation and local electric field formation, leading to enhanced dielectric loss. Furthermore, the open-structured nanocage dramatically improves electromagnetic wave penetration depth and energy dissipation efficiency by lowering material density, promoting impedance matching, and providing multiple scattering pathways. Experimental findings indicate that optimized sample achieves a minimum reflection loss of −48.59 dB at a thickness of only 1.82 mm, and an effective absorption bandwidth of 5.92 GHz. This approach thus represents a promising structural design strategy for advancing the performance of lightweight carbon-based microwave absorbing materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有开放式结构的多杂原子掺杂碳纳米笼,可实现卓越的电磁波吸收能力
与纯碳材料相比,杂原子的引入和中空纳米结构的构建可以显著提高电磁波吸收性能。本文成功地设计并制备了具有非晶结构的多杂原子掺杂开放纳米笼。杂原子的引入,包括Zn、Co和N,导致电荷重新分布,并在碳基体内部形成局域极化中心,从而增加介电损耗。同时,杂原子与碳层缺陷之间的协同作用进一步加剧了空间电荷的积累和局部电场的形成,导致介质损耗增加。此外,开放结构的纳米笼通过降低材料密度、促进阻抗匹配和提供多种散射途径,显著提高了电磁波的穿透深度和能量耗散效率。实验结果表明,优化后的样品在厚度仅为1.82 mm时的反射损耗最小为- 48.59 dB,有效吸收带宽为5.92 GHz。因此,这种方法代表了一种有前途的结构设计策略,可以提高轻质碳基微波吸收材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1