Enhancing the electrochemical conversion of carbon dioxide to value-added products on zinc oxide-MXene nanocomposite

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-31 DOI:10.1016/j.jcis.2025.137487
AbdulHakam Shafiu Abdullahi , Umar Mustapha , Omer Ahmed Taialla , Esraa Kotob , Ijaz Hussain , Khalid Alhooshani , Shehzada Muhammad Sajid Jillani , Saheed A. Ganiyu
{"title":"Enhancing the electrochemical conversion of carbon dioxide to value-added products on zinc oxide-MXene nanocomposite","authors":"AbdulHakam Shafiu Abdullahi ,&nbsp;Umar Mustapha ,&nbsp;Omer Ahmed Taialla ,&nbsp;Esraa Kotob ,&nbsp;Ijaz Hussain ,&nbsp;Khalid Alhooshani ,&nbsp;Shehzada Muhammad Sajid Jillani ,&nbsp;Saheed A. Ganiyu","doi":"10.1016/j.jcis.2025.137487","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and sustainable catalysts for CO<sub>2</sub> electroreduction is critical to addressing the rising atmospheric CO<sub>2</sub> levels and mitigating climate change. This study presents a novel ZnO-MXene (Ti<sub>2</sub>C) nanocomposite as a high-performance electrocatalyst for CO<sub>2</sub> conversion, offering a strategic approach for generating valuable carbon-based feedstocks. The ZnO-MXene nanocomposites were synthesized via the wet impregnation method and comprehensively characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Electrochemical performance was assessed through linear sweep voltammetry (LSV), cyclic voltammetry (CV), and controlled potential coulometry, with gas chromatography employed for product quantification. ZnO-MX<sub>10</sub> and ZnO-MX<sub>2.5</sub> exhibited high selectivity for CH<sub>4</sub> (79.3 % Faradaic efficiency, FE) at −0.56 V<sub>RHE</sub> and CO (76.8 % FE) at −0.78 V<sub>RHE</sub>, while significantly suppressing competing H<sub>2</sub> evolution. The synergistic interaction between ZnO and MXene enhances charge transfer, increases active sites, and improves surface area, leading to superior electrochemical performance. Overall, this work introduces a novel ZnO-MXene nanocomposite with dual selectivity for CO and CH<sub>4</sub>, enhanced electroactive surface, and long-term stability. Unlike conventional Zn-based catalysts, which exhibit either limited selectivity or rapid degradation, our composite achieves 79.3 % Faradaic efficiency for CH<sub>4</sub> and 76.8 % for CO, while suppressing H<sub>2</sub> evolution. This unique tunability and stability make ZnO-MXene an attractive alternative to noble metal-based electrocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137487"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008781","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and sustainable catalysts for CO2 electroreduction is critical to addressing the rising atmospheric CO2 levels and mitigating climate change. This study presents a novel ZnO-MXene (Ti2C) nanocomposite as a high-performance electrocatalyst for CO2 conversion, offering a strategic approach for generating valuable carbon-based feedstocks. The ZnO-MXene nanocomposites were synthesized via the wet impregnation method and comprehensively characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Electrochemical performance was assessed through linear sweep voltammetry (LSV), cyclic voltammetry (CV), and controlled potential coulometry, with gas chromatography employed for product quantification. ZnO-MX10 and ZnO-MX2.5 exhibited high selectivity for CH4 (79.3 % Faradaic efficiency, FE) at −0.56 VRHE and CO (76.8 % FE) at −0.78 VRHE, while significantly suppressing competing H2 evolution. The synergistic interaction between ZnO and MXene enhances charge transfer, increases active sites, and improves surface area, leading to superior electrochemical performance. Overall, this work introduces a novel ZnO-MXene nanocomposite with dual selectivity for CO and CH4, enhanced electroactive surface, and long-term stability. Unlike conventional Zn-based catalysts, which exhibit either limited selectivity or rapid degradation, our composite achieves 79.3 % Faradaic efficiency for CH4 and 76.8 % for CO, while suppressing H2 evolution. This unique tunability and stability make ZnO-MXene an attractive alternative to noble metal-based electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在氧化锌-MXene 纳米复合材料上加强二氧化碳向增值产品的电化学转化
开发高效、可持续的二氧化碳电还原催化剂对于解决大气中二氧化碳含量不断上升的问题和减缓气候变化至关重要。本研究提出了一种新型 ZnO-MXene (Ti2C) 纳米复合材料,作为二氧化碳转化的高性能电催化剂,为生成有价值的碳基原料提供了一种战略方法。ZnO-MXene 纳米复合材料是通过湿浸渍法合成的,并使用 X 射线衍射 (XRD)、能量色散 X 射线光谱 (EDS)、场发射扫描电子显微镜 (FESEM)、透射电子显微镜 (TEM) 和傅立叶变换红外光谱 (FTIR) 对其进行了全面表征。电化学性能通过线性扫描伏安法(LSV)、循环伏安法(CV)和受控电位库仑测定法进行评估,并采用气相色谱法进行产品定量。ZnO-MX10 和 ZnO-MX2.5 在-0.56 VRHE 条件下对 CH4(79.3 % Faradaic efficiency,FE)和 CO(76.8 % FE)在-0.78 VRHE 条件下表现出高选择性,同时显著抑制了竞争性 H2 的演化。氧化锌和 MXene 之间的协同作用增强了电荷转移、增加了活性位点并提高了表面积,从而实现了卓越的电化学性能。总之,这项研究推出了一种新型 ZnO-MXene 纳米复合材料,具有 CO 和 CH4 双选择性、增强的电活性表面和长期稳定性。传统的锌基催化剂要么选择性有限,要么会快速降解,而我们的复合材料与之不同,在抑制 H2 演化的同时,对 CH4 的法拉第效率达到 79.3%,对 CO 的法拉第效率达到 76.8%。这种独特的可调性和稳定性使 ZnO-MXene 成为贵金属电催化剂的一种极具吸引力的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1