High loading of atomically exposed edge nickel sites embedded in hollow porous carbon nanofibers for enhanced methanol electrooxidation in direct methanol fuel cells

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-31 DOI:10.1016/j.jcis.2025.137488
Fei Chen , Quan Zhou , Shuyan Yu , Shiquan Guo , Man Guo , Chong Zhang , Ziyu Guan , Haijiao Xie , Congju Li
{"title":"High loading of atomically exposed edge nickel sites embedded in hollow porous carbon nanofibers for enhanced methanol electrooxidation in direct methanol fuel cells","authors":"Fei Chen ,&nbsp;Quan Zhou ,&nbsp;Shuyan Yu ,&nbsp;Shiquan Guo ,&nbsp;Man Guo ,&nbsp;Chong Zhang ,&nbsp;Ziyu Guan ,&nbsp;Haijiao Xie ,&nbsp;Congju Li","doi":"10.1016/j.jcis.2025.137488","DOIUrl":null,"url":null,"abstract":"<div><div>The enhancement of catalytic activity and durability for atomically dispersed metal-nitrogen-carbon (M–N–C) catalysts in methanol oxidation reaction (MOR) anodes within direct methanol fuel cells presents a significant challenge. Here, we developed hollow porous nanofiber catalysts featuring edge Ni–N<sub>4</sub> atomic sites through coaxial electrostatic spinning with domain-restricted Ni atoms embedded within a zeolitic imidazolium ester backbone, thereby increasing the exposure of accessible active sites (Ni: 4.96 %). The distinctive hollow porous fiber morphology and hierarchical structure facilitate convenient electronic conductivity and mass transport of reactants. Theoretical findings indicate that the surface adsorption of methanol at the edge Ni–N<sub>4</sub> atomic sites exhibits negative free energy, promoting the adsorption and activation of reactants. Furthermore, the initial dehydrogenation step demonstrates a low free energy change, favoring reaction kinetics. The membrane electrode assembly achieved a power density of 42.2 mW cm<sup>−2</sup> in single-cell application tests while displaying improved durability. This research provides valuable insights for future advancements in single-atom catalyst development for fuel cells or other energy applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137488"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The enhancement of catalytic activity and durability for atomically dispersed metal-nitrogen-carbon (M–N–C) catalysts in methanol oxidation reaction (MOR) anodes within direct methanol fuel cells presents a significant challenge. Here, we developed hollow porous nanofiber catalysts featuring edge Ni–N4 atomic sites through coaxial electrostatic spinning with domain-restricted Ni atoms embedded within a zeolitic imidazolium ester backbone, thereby increasing the exposure of accessible active sites (Ni: 4.96 %). The distinctive hollow porous fiber morphology and hierarchical structure facilitate convenient electronic conductivity and mass transport of reactants. Theoretical findings indicate that the surface adsorption of methanol at the edge Ni–N4 atomic sites exhibits negative free energy, promoting the adsorption and activation of reactants. Furthermore, the initial dehydrogenation step demonstrates a low free energy change, favoring reaction kinetics. The membrane electrode assembly achieved a power density of 42.2 mW cm−2 in single-cell application tests while displaying improved durability. This research provides valuable insights for future advancements in single-atom catalyst development for fuel cells or other energy applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在直接甲醇燃料电池中,嵌入中空多孔碳纳米纤维的高负载原子暴露边缘镍位点用于增强甲醇电氧化
在直接甲醇燃料电池的甲醇氧化反应(MOR)阳极中,如何提高原子分散金属氮碳(M-N-C)催化剂的催化活性和耐久性是一项重大挑战。在此,我们开发了中空多孔纳米纤维催化剂,通过同轴静电纺丝,将域受限的镍原子嵌入沸石咪唑鎓酯骨架中,从而增加了可触及活性位点(镍:4.96%)的暴露率,使其具有边缘镍-镍-碳原子位点。独特的中空多孔纤维形态和分层结构有利于电子传导和反应物的质量传输。理论研究结果表明,甲醇在 Ni-N4 原子位点边缘的表面吸附表现出负自由能,促进了反应物的吸附和活化。此外,最初的脱氢步骤显示出较低的自由能变化,有利于反应动力学。在单电池应用测试中,膜电极组件的功率密度达到了 42.2 mW cm-2,同时显示出更好的耐用性。这项研究为未来燃料电池或其他能源应用领域的单原子催化剂开发提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
2-methylimidazole
麦克林
poly(styrene-coacrylonitrile)
麦克林
polyvinyl pyrrolidone
麦克林
Polyacrylonitrile
麦克林
2-methylimidazole
麦克林
poly(styrene-coacrylonitrile)
麦克林
polyvinyl pyrrolidone
麦克林
Polyacrylonitrile
阿拉丁
nickel (II) nitrate hexahydrate
阿拉丁
zinc nitrate hexahydrate
阿拉丁
CTAB
阿拉丁
N, N-dimethylformamide
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1