{"title":"Isoquercitrin Alleviates Diabetic Nephropathy by Inhibiting STAT3 Phosphorylation and Dimerization","authors":"Chen Xuan, Donghui Chen, Shuangna Zhang, Chaofan Li, Qingyun Fang, Dinghua Chen, Jiabao Liu, Xin Jiang, Yingjie Zhang, Wanjun Shen, Guangyan Cai, Xiangmei Chen, Ping Li","doi":"10.1002/advs.202414587","DOIUrl":null,"url":null,"abstract":"<p>At the convergence point of multiple cytokine signals, signal transducer and activator of transcription 3 (STAT3) is a highly promising therapeutic target for diabetic nephropathy. Isoquercitrin, a natural small-molecule inhibitor of STAT3, may have beneficial effects on diabetic nephropathy; however, the underlying mechanism remains unclear. Isoquercitrin significantly mitigated renal inflammation and fibrosis by inhibiting STAT3 activity in mice with diabetic nephropathy. Moreover, STAT3 is a direct molecular target of isoquercitrin, which as corroborated by tight and stable noncovalent binding between them. This interaction is mechanistically supported by the affinity of isoquercitrin for the Ser668–Gln635–Gln633 region within the pY+1 binding pocket of the SH2 domain. This binding obstructs pivotal processes like STAT3 phosphorylation and dimerization, thereby suppressing its transcriptional function. Finally, a kidney-targeted nanocarrier, Iso@PEG-GK, is developed to load isoquercitrin, thus enhancing its therapeutic precision for diabetic nephropathy. Iso@PEG-GK significantly improved the absorption and renal distribution of isoquercitrin. This study is the first to demonstrate that isoquercitrin exerts a significant protective effect against diabetic nephropathy and may provide a novel therapeutic drug for this disease.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 25","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202414587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202414587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At the convergence point of multiple cytokine signals, signal transducer and activator of transcription 3 (STAT3) is a highly promising therapeutic target for diabetic nephropathy. Isoquercitrin, a natural small-molecule inhibitor of STAT3, may have beneficial effects on diabetic nephropathy; however, the underlying mechanism remains unclear. Isoquercitrin significantly mitigated renal inflammation and fibrosis by inhibiting STAT3 activity in mice with diabetic nephropathy. Moreover, STAT3 is a direct molecular target of isoquercitrin, which as corroborated by tight and stable noncovalent binding between them. This interaction is mechanistically supported by the affinity of isoquercitrin for the Ser668–Gln635–Gln633 region within the pY+1 binding pocket of the SH2 domain. This binding obstructs pivotal processes like STAT3 phosphorylation and dimerization, thereby suppressing its transcriptional function. Finally, a kidney-targeted nanocarrier, Iso@PEG-GK, is developed to load isoquercitrin, thus enhancing its therapeutic precision for diabetic nephropathy. Iso@PEG-GK significantly improved the absorption and renal distribution of isoquercitrin. This study is the first to demonstrate that isoquercitrin exerts a significant protective effect against diabetic nephropathy and may provide a novel therapeutic drug for this disease.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.