Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques.

Q2 Medicine Oncotarget Pub Date : 2025-04-04 DOI:10.18632/oncotarget.28709
Yashbir Singh, Jesper B Andersen, Quincy Hathaway, Sudhakar K Venkatesh, Gregory J Gores, Bradley Erickson
{"title":"Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques.","authors":"Yashbir Singh, Jesper B Andersen, Quincy Hathaway, Sudhakar K Venkatesh, Gregory J Gores, Bradley Erickson","doi":"10.18632/oncotarget.28709","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in deep learning models have transformed medical imaging analysis, particularly in radiology. This editorial outlines how uncertainty quantification through embedding-based approaches enhances diagnostic accuracy and reliability in hepatobiliary imaging, with a specific focus on oncological conditions and early detection of precancerous lesions. We explore modern architectures like the Anisotropic Hybrid Network (AHUNet), which leverages both 2D imaging and 3D volumetric data through innovative convolutional approaches. We consider the implications for quality assurance in radiological practice and discuss recent clinical applications.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"16 ","pages":"249-255"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in deep learning models have transformed medical imaging analysis, particularly in radiology. This editorial outlines how uncertainty quantification through embedding-based approaches enhances diagnostic accuracy and reliability in hepatobiliary imaging, with a specific focus on oncological conditions and early detection of precancerous lesions. We explore modern architectures like the Anisotropic Hybrid Network (AHUNet), which leverages both 2D imaging and 3D volumetric data through innovative convolutional approaches. We consider the implications for quality assurance in radiological practice and discuss recent clinical applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的不确定度量化用于肝胆成像技术的质量保证。
深度学习模型的最新进展已经改变了医学成像分析,特别是放射学。这篇社论概述了通过基于嵌入的方法进行不确定性量化如何提高肝胆影像学诊断的准确性和可靠性,并特别关注肿瘤状况和癌前病变的早期检测。我们探索了现代架构,如各向异性混合网络(AHUNet),它通过创新的卷积方法利用了2D成像和3D体积数据。我们考虑质量保证在放射实践的影响,并讨论最近的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
期刊最新文献
Hypothesis: HPV E6 and COVID spike proteins cooperate in targeting tumor suppression by p53. COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms. Nerofe+ldDox releases c-Jun from nuclear ST2 to reprogram the immune microenvironment in mtKRAS tumors. Machine learning-based survival prediction in colorectal cancer combining clinical and biological features. Correction: Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1